日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某數(shù)學(xué)老師對(duì)本校2013屆高三學(xué)生某次聯(lián)考的數(shù)學(xué)成績(jī)進(jìn)行分析,按1:50進(jìn)行分層抽樣抽取20名學(xué)生的成績(jī)進(jìn)行分析,分?jǐn)?shù)用莖葉圖記錄如圖所示(部分?jǐn)?shù)據(jù)丟失),得到的頻率分布表如下:

          分?jǐn)?shù)段(分)

          [50,70]

          [70,90]

          [90,110]

          [110,130]

          [130,150]

          合計(jì)

          頻數(shù)

          b

          頻率

          a

          0.25


          (1)表中a,b的值及分?jǐn)?shù)在[90,100)范圍內(nèi)的學(xué)生,并估計(jì)這次考試全校學(xué)生數(shù)學(xué)成績(jī)及格率(分?jǐn)?shù)在[90,150]范圍為及格);
          (2)從大于等于110分的學(xué)生隨機(jī)選2名學(xué)生得分,求2名學(xué)生的平均得分大于等于130分的概率.

          【答案】
          (1)解:由莖葉圖可知分?jǐn)?shù)在[50,70)范圍內(nèi)的有2人,在[110,130)范圍內(nèi)的有3人,

          ∴a= ,b=3.

          又分?jǐn)?shù)在[110,150)范圍內(nèi)的頻率為 ,

          ∴分?jǐn)?shù)在[90,110)范圍內(nèi)的頻率為1﹣0.1﹣0.25﹣0.25=0.4,

          ∴分?jǐn)?shù)在[90,110)范圍內(nèi)的人數(shù)為20×0.4=8,

          由莖葉圖可知分?jǐn)?shù)[100,110)范圍內(nèi)的人數(shù)為4人,

          ∴分?jǐn)?shù)在[90,100)范圍內(nèi)的學(xué)生數(shù)為8﹣4=4(人).

          從莖葉圖可知分?jǐn)?shù)在[70,90]范圍內(nèi)的頻率為0.3,所以有20×0.3=6(人),

          ∴數(shù)學(xué)成績(jī)及格的學(xué)生為13人,

          ∴估計(jì)全校數(shù)學(xué)成績(jī)及格率為 %.


          (2)解:設(shè)A表示事件“大于等于100分的學(xué)生中隨機(jī)選2名學(xué)生得分,平均得分大于等于130分”,

          由莖葉圖可知大于等于100分有5人,記這5人分別為a,b,c,d,e,

          則選取學(xué)生的所有可能結(jié)果為:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),基本事件數(shù)為10,

          事件“2名學(xué)生的平均得分大于等于130分”也就是“這兩個(gè)學(xué)生的分?jǐn)?shù)之和大于等于260”,

          所以可能結(jié)果為:(118,142),(128,136),(128,142),(136,142),

          共4種情況,基本事件數(shù)為4,


          【解析】(1)根據(jù)莖葉圖計(jì)算表中a,b的值,并估計(jì)這次考試全校學(xué)生數(shù)學(xué)成績(jī)及格率(分?jǐn)?shù)在[90,150]范圍為及格);(2)利用列表法,結(jié)合古典概率求2名學(xué)生的平均得分大于等于130分的概率.
          【考點(diǎn)精析】本題主要考查了頻率分布表和莖葉圖的相關(guān)知識(shí)點(diǎn),需要掌握第一步,求極差;第二步,決定組距與組數(shù);第三步,確定分點(diǎn),將數(shù)據(jù)分組;第四步,列頻率分布表;莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個(gè)主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個(gè)主干后面的幾個(gè)數(shù),每個(gè)數(shù)具體是多少才能正確解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)設(shè)關(guān)于的方程個(gè)不同的實(shí)數(shù)解,則的所有可能的值為(

          A. 3 B. 13 C. 46 D. 346

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=cos2 ﹣sin cos
          (1)求函數(shù)f(x)的最小正周期和值域;
          (2)若 ,求sin2α的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列結(jié)論正確的是

          在某項(xiàng)測(cè)量中,測(cè)量結(jié)果服從正態(tài)分布.若內(nèi)取值的概率為0.35,則內(nèi)取值的概率為0.7;

          以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),其變換后得到線性回歸方程,則;

          已知命題若函數(shù)上是增函數(shù),則的逆否命題是,則函數(shù)上是減函數(shù)是真命題;

          設(shè)常數(shù),則不等式對(duì)恒成立的充要條件是.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖是函數(shù)的圖象,給出下列命題:

          是函數(shù)的極值點(diǎn)

          ②1是函數(shù)的極小值點(diǎn)

          處切線的斜率大于零

          在區(qū)間上單調(diào)遞減

          則正確命題的序號(hào)是__________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= [ sin(x﹣ )].
          (1)求f(x)的定義域和值域;
          (2)說明f(x)的奇偶性;
          (3)求f(x)的單調(diào)增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】要得到函數(shù)y=2cosxsin(x+ )﹣ 的圖象,只需將y=sinx的圖象(
          A.先向左平移 個(gè)單位長(zhǎng)度,再將所有點(diǎn)的橫坐標(biāo)縮短為原來的 倍(縱坐標(biāo)不變)
          B.先向左平移 個(gè)單位長(zhǎng)度,再將所有點(diǎn)的橫坐標(biāo)縮短為原來的2倍(縱坐標(biāo)不變)
          C.先將所有點(diǎn)的橫坐標(biāo)縮短為原來的2倍(縱坐標(biāo)不變),再向左平移 個(gè)單位長(zhǎng)度
          D.先將所有點(diǎn)的橫坐標(biāo)縮短為原來的 倍(縱坐標(biāo)不變),再向左平移 個(gè)單位長(zhǎng)度

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知在棱柱的面底是菱形,且面ABCD,

          為棱的中點(diǎn),M為線段的中點(diǎn).

          (1)求證:平面平面

          (2)求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在棱長(zhǎng)為2的正方體ABCD﹣A1B1C1D1中,E、F分別為DD1、DB的中點(diǎn).

          (1)求證:EF⊥B1C;
          (2)求三棱錐E﹣FCB1的體積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案