日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)的圖象經(jīng)過點
          (1)求函數(shù)的解析式;
          (2)設,用函數(shù)單調(diào)性的定義證明:函數(shù)在區(qū)間上單調(diào)遞減;
          (3)解不等式:

          (1),(2)詳見解析,(3).

          解析試題分析:(1)求函數(shù)的解析式,只需確定的值即可,由函數(shù)的圖象經(jīng)過點,得,再由,(2)用函數(shù)單調(diào)性的定義證明單調(diào)性,一設上的任意兩個值,二作差,三因式分解確定符號,(3)解不等式,一可代入解析式,轉(zhuǎn)化為解對數(shù)不等式,需注意不等號方向及真數(shù)大于零隱含條件,二利用函數(shù)單調(diào)性,去“”,注意定義域.
          試題解析:(1),解得: ∵ 且;   3分
          (2)設上的任意兩個值,且,則
                  6分
          ,在區(qū)間上單調(diào)遞減.  8分
          (3)方法(一):
          ,解得:,即函數(shù)的定義域為;     10分
          先研究函數(shù)上的單調(diào)性.
          可運用函數(shù)單調(diào)性的定義證明函數(shù)在區(qū)間上單調(diào)遞減,證明過程略.
          或設、上的任意兩個值,且,
          由(2)得: ,即
          在區(qū)間上單調(diào)遞減.                    12分
          再利用函數(shù)的單調(diào)性解不等式:
          上為單調(diào)減函數(shù).,    13分
          ,解得:
          .                         15分
          方法(二):           10分
          得:;由得:,                       13分
          .                         15分
          考點:函數(shù)解析式,函數(shù)單調(diào)性定義,解不等式.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:解答題

          設函數(shù)f(x)是定義在(-1,1)上的偶函數(shù),在(0,1)上是增函數(shù),若f(a-2)-f(4-a2)<0,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)f(x)=ex-ex(x∈R且e為自然對數(shù)的底數(shù)).
          (1)判斷函數(shù)f(x)的奇偶性與單調(diào)性;
          (2)是否存在實數(shù)t,使不等式f(xt)+f(x2t2)≥0對一切x都成立?若存在,求出t;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù).
          (1)求函數(shù)的定義域;
          (2)判斷的奇偶性并予以證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知冪函數(shù)為偶函數(shù).
          (1)求的解析式;
          (2)若函數(shù)在區(qū)間(2,3)上為單調(diào)函數(shù),求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知,函數(shù).

          (1)當時,畫出函數(shù)的大致圖像;
          (2)當時,根據(jù)圖像寫出函數(shù)的單調(diào)減區(qū)間,并用定義證明你的結論;
          (3)試討論關于x的方程解的個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)上的奇函數(shù),且
          (1)求的值
          (2)若,求的值
          (3)若關于的不等式上恒成立,求的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)過點.
          (1)求實數(shù);
          (2)將函數(shù)的圖像向下平移1個單位,再向右平移個單位后得到函數(shù)圖像,設函數(shù)關于軸對稱的函數(shù)為,試求的解析式;
          (3)對于定義在上的函數(shù),若在其定義域內(nèi),不等式恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知.
          (Ⅰ)當時,判斷的奇偶性,并說明理由;
          (Ⅱ)當時,若,求的值;
          (Ⅲ)若,且對任何不等式恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          同步練習冊答案