日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,短軸長(zhǎng)為2,且兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)恰為一個(gè)正方形的頂點(diǎn).過(guò)右焦點(diǎn)F與x軸不垂直的直線l交橢圓于P,Q兩點(diǎn).
          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
          (Ⅱ)在線段OF上是否存在點(diǎn)M(m,0),使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
          分析:(Ⅰ)橢圓方程可設(shè)為
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          ,利用兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)恰為正方形的頂點(diǎn),且短軸長(zhǎng)為2,即可求得橢圓方程;
          (Ⅱ)假設(shè)在線段OF上存在點(diǎn)M(m,0)(0<m<1),使得以MP,MQ為鄰邊的平行四邊形是菱形.因?yàn)橹本與x軸不垂直,所以設(shè)直線l的方程為y=k(x-1)(k≠0),與橢圓方程聯(lián)立,再利用韋達(dá)定理.根據(jù)以MP,MQ為鄰邊的平行四邊形是菱形等價(jià)于(
          MP
          +
          MQ
          )⊥
          PQ
          ,即(
          MP
          +
          MQ
          )•
          PQ
          =0
          ,由此可確定m的取值范圍.
          解答:解:(Ⅰ)由已知,橢圓方程可設(shè)為
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)

          ∵兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)恰為正方形的頂點(diǎn),且短軸長(zhǎng)為2,
          b=c=1 , a=
          2
          .    
          ∴所求橢圓方程為
          x2
          2
          +y2=1
          .    (4分)
          (Ⅱ)假設(shè)在線段OF上存在點(diǎn)M(m,0)(0<m<1),使得以MP,MQ為鄰邊的平行四邊形是菱形.
          因?yàn)橹本與x軸不垂直,所以設(shè)直線l的方程為y=k(x-1)(k≠0).
          由 
          x2+2y2=2
          y=k(x-1)
          可得(1+2k2)x2-4k2x+2k2-2=0.
          設(shè)P(x1,y1),Q(x2,y2),則
          x1+x2=
          4k2
          1+2k2
          ,x1x2=
          2k2-2
          1+2k2
          MP
          =(x1-m, y1),
          MQ
          =(x2-m, y2),
          PQ
          =(x2-x1, y2-y1)
          .其中x2-x1≠0
          以MP,MQ為鄰邊的平行四邊形是菱形等價(jià)于(
          MP
          +
          MQ
          )⊥
          PQ
          ,即(
          MP
          +
          MQ
          )•
          PQ
          =0

          ∴(x1+x2-2m,y1+y2)•(x2-x1,y2-y1)=0
          ∴(x1+x2-2m)(x2-x1)+(y1+y2)(y2-y1)=0
          ∴(x1+x2-2m)+k(y1+y2)=0
          (
          4k2
          1+2k2
          -2m)+k2(
          4k2
          1+2k2
          -2)=0

          ∴2k2-(2+4k2)m=0
          m=
          k2
          1+2k2
          (k≠0)

          m=
          1
          1
          k2
          +2

          1
          k2
          + 2>2

          0<m<
          1
          2
          .  (12分).
          點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,正確構(gòu)建函數(shù)是關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知橢圓的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,短軸長(zhǎng)為2,且兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)恰為一個(gè)正方形的頂點(diǎn).過(guò)右焦點(diǎn)F與x軸不垂直的直線l交橢圓于P,Q兩點(diǎn).
          (1)求橢圓的方程;
          (2)當(dāng)直線l的斜率為1時(shí),求△POQ的面積;
          (3)在線段OF上是否存在點(diǎn)M(m,0),使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓的中心在坐標(biāo)原點(diǎn),且經(jīng)過(guò)點(diǎn)M(1,
          2
          5
          5
          )
          ,N(-2,
          5
          5
          )
          ,若圓C的圓心與橢圓的右焦點(diǎn)重合,圓的半徑恰好等于橢圓的短半軸長(zhǎng),已知點(diǎn)A(x,y)為圓C上的一點(diǎn).
          (1)求橢圓的標(biāo)準(zhǔn)方程和圓的標(biāo)準(zhǔn)方程;
          (2)求
          AC
          AO
          +2|
          AC
          -
          AO
          |
          (O為坐標(biāo)原點(diǎn))的取值范圍;
          (3)求x2+y2的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓上點(diǎn)P(3
          2
          ,4)
          到兩焦點(diǎn)的距離之和是12,則橢圓的標(biāo)準(zhǔn)方程是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,焦距為6
          3
          ,且橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為12,則橢圓的方程為
          x2
          36
          +
          y2
          9
          =1
          x2
          36
          +
          y2
          9
          =1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率為
          2
          2
          ,坐標(biāo)原點(diǎn)O到過(guò)右焦點(diǎn)F且斜率為1的直線的距離為
          2
          2

          (1)求橢圓的方程;
          (2)設(shè)過(guò)右焦點(diǎn)F且與坐標(biāo)軸不垂直的直線l交橢圓于P、Q兩點(diǎn),在線段OF上是否存在點(diǎn)M(m,0),使得以MP、MQ為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案