日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知PA⊥平面ABCD,且四邊形ABCD為矩形,M、N分別是AB、PC的中點.
          求證:(1)MN∥平面PAD;
          (2)MN⊥CD;
          (3)當∠PDA=45°,求證:MN⊥平面PCD.

          解:(1)證明:∵四邊形ABCD為矩形,M、N分別是AB、PC的中點,再取PD的中點Q,連接NQ,
          則有NQ∥,且NQ=.同理可得 MA∥,且 MA=
          ∴NQ∥MA,NQ=MA. 故四邊形MNQA為平行四邊形,∴MN∥PQ.
          而AQ在平面PAD內(nèi),MN不在平面PAD內(nèi),∴MN∥平面PAD.
          (2)證明:再由PA⊥平面ABCD可得,PA⊥CD,再由四邊形ABCD為矩形,可得CD⊥AD.
          這樣,CD垂直于平面PAD內(nèi)的兩條相交直線,故CD⊥平面PAD. 而AQ在平面PAD內(nèi),∴CD⊥AQ,∴CD⊥MN.
          (3)證明:當∠PDA=45°時,△PAD為等腰直角三角形,∴AQ⊥PD.
          再由CD⊥AQ,可得AQ⊥平面PCD,∴MN⊥平面PCD.
          分析:(1)證明取PD的中點Q,連接NQ,證明NQ∥MA,NQ=MA,從而四邊形MNQA為平行四邊形,MN∥PQ,再根據(jù)直線和平面平行的判定定理證得 MN∥平面PAD.
          (2)先證明PA⊥CD,CD⊥AD從而證明CD⊥平面PAD.根據(jù)AQ在平面PAD內(nèi),可得CD⊥AQ,從而CD⊥MN.
          (3)證明:當∠PDA=45°時,△PAD為等腰直角三角形,得到AQ⊥PD,再由CD⊥AQ,可得AQ⊥平面PCD,從而得到 MN⊥平面PCD.
          點評:本題考查證明線面平行、線線垂直、線面垂直的方法,直線和平面平行的判定、直線和平面垂直的判定,屬于中檔題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,三棱錐P-ABC中,已知PA⊥平面ABC,PA=3,PB=PC=BC=6,求二面角P-BC-A的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•寶雞模擬)如圖,已知PA⊥平面ABC,且PA=
          2
          ,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E.
          (1)求證:PC⊥平面ADE;
          (2)求點D到平面ABC的距離.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•徐匯區(qū)一模)如圖,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D,E分別是BC,AP的中點.
          (1)求異面直線AC與ED所成的角的大。
          (2)求△PDE繞直線PA旋轉(zhuǎn)一周所構(gòu)成的旋轉(zhuǎn)體的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•徐匯區(qū)一模)如圖,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D是AB的中點.
          (1)求PD與平面PAC所成的角的大;
          (2)求△PDB繞直線PA旋轉(zhuǎn)一周所構(gòu)成的旋轉(zhuǎn)體的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•鹽城三模)如圖,三棱錐P-ABC中,已知PA⊥平面ABC,△ABC是邊長為2的正三角形,D,E分別為PB,PC中點.
          (1)若PA=2,求直線AE與PB所成角的余弦值;
          (2)若平面ADE⊥平面PBC,求PA的長.

          查看答案和解析>>

          同步練習冊答案