【題目】如圖,所有棱長都相等的直四棱柱 中,
中點(diǎn)為
.
(1)求證:平面
;
(2)若,求二面角
的余弦值.
【答案】(1)見解析;(2).
【解析】試題分析:(1)連交
于點(diǎn)
,連
,知
與
交于
中點(diǎn)
證明四邊形
為平行四邊形,由此得到
,即可證明結(jié)論成立;(2)建立如圖所示空間直角坐標(biāo)系,求出面
和面
的法向量即可得出結(jié)論.
試題解析:(1)連交
于點(diǎn)
,由
四邊相等知
為
中點(diǎn),連
,則由
四邊相等知
與
交于
中點(diǎn)
.又在棱柱中,
.
四邊形
為平行四邊形,
,
,連
,則四邊形
為平行四邊形,
,
平面
平面
,
平面
.
(2)設(shè)中點(diǎn)為
,
四邊長都為
,
,
四棱柱是直四棱柱,
可建立如圖所示空間直角坐標(biāo)系,
,
,設(shè)平面
的一個法向量為
,則
,
,取
,則
,同樣可求平面
的一個法向量
,
,
二面角
的余弦值為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求曲線
在點(diǎn)
處的切線方程;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求
的取值范圍;
(3)在(2)的條件下,設(shè)函數(shù),若在
上至少存在一點(diǎn)
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知菱形中,對角線
與
相交于一點(diǎn)
,
,將
沿著
折起得
,連接
.
(1)求證:平面平面
;
(2)若點(diǎn)在平面
上的投影恰好是
的重心,求直線
與底面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
)的圖象與直線
相切,當(dāng)
恰有一個零點(diǎn)時,實(shí)數(shù)
的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(1)求f(x)的解析式;
(2)若對任意t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知☉O:x2+y2=1和定點(diǎn)A(2,1),由☉O外一點(diǎn)P(a,b)向☉O引切線PQ,切點(diǎn)為Q,且滿足|PQ|=|PA|.
(1)求實(shí)數(shù)a,b間滿足的等量關(guān)系.
(2)求線段PQ長的最小值.
(3)若以P為圓心所作的☉P與☉O有公共點(diǎn),試求半徑取最小值時☉P的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
,函數(shù)
的圖象在點(diǎn)
處的切線平行于
軸.
(1)求的值;
(2)求函數(shù)的極小值;
(3)設(shè)斜率為的直線與函數(shù)
的圖象交于兩點(diǎn)
,
,
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),若過點(diǎn)
可作三條直線與曲線
相切,則實(shí)數(shù)
的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且
.
(I)若,求函數(shù)
的單調(diào)區(qū)間;(其中
是自然對數(shù)的底數(shù))
(II)設(shè)函數(shù),當(dāng)
時,曲線
與
有兩個交點(diǎn),求
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com