【題目】已知橢圖:
的右頂點與拋物線
:
的焦點重合,橢圓
的離心率為
,過橢圓
的右焦點
且垂直于
軸的直線截拋物線所得的弦長為
.
(1)求橢圓和拋物線
的方程;
(2)過點的直線
與橢圓
交于
,
兩點,點
關(guān)于
軸的對稱點為
.當直線
繞點
旋轉(zhuǎn)時,直線
是否經(jīng)過一定點?請判斷并證明你的結(jié)論.
【答案】(1),
;(2)是,證明見解析.
【解析】
(1)利用橢圓的頂點與拋物線的焦點坐標相同,橢圓的離心率,列出方程組,求出,
,即可得到橢圓方程拋物線方程;
(2)把直線方程與橢圓方程聯(lián)立可得根與系數(shù)的關(guān)系,設(shè),
,
,
,
,
,求得直線
的方程,化簡整理,由直線恒過定點的求法,可得所求定點.
解:(1)設(shè)橢圓的半焦距為
,依題意,可得
,則
:
,
代入,得
,即
,所以
,
則有,
.
所以橢圓的方程為
,拋物線
的方程為
.
(2)依題意,當直線的斜率不為0時,設(shè)其方程為
,
聯(lián)立,得
,
設(shè),
,則
,由
,解得
或
,
且,
,
根據(jù)橢圓的對稱性可知,若直線過定點,此定點必在
軸上,設(shè)此定點為
,
因斜率,得
,即
,
即,即
,
即,得
,
由的任意性可知
.
當直線的斜率為0時,直線
的方程即為
,也經(jīng)過點
,
所以當或
時,直線
恒過一定點
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),下列判斷正確的是( )
A. 有最大值和最小值
B. 的圖象的對稱中心為
(
)
C. 在
上存在單調(diào)遞減區(qū)間
D. 的圖象可由
的圖象向左平移
個單位而得
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知鮮切花的質(zhì)量等級按照花枝長度
進行劃分,劃分標準如下表所示.
花枝長度 | |||
鮮花等級 | 三級 | 二級 | 一級 |
某鮮切花加工企業(yè)分別從甲乙兩個種植基地購進鮮切花,現(xiàn)從兩個種植基地購進的鮮切花
中分別隨機抽取30個樣品,測量花枝長度并進行等級評定,所抽取樣品數(shù)據(jù)如圖所示.
(1)根據(jù)莖葉圖比較兩個種植基地鮮切花的花枝長度的平均值及分散程度(不要求計算具體值,給出結(jié)論即可);
(2)若從等級為三級的樣品中隨機選取2個進行新產(chǎn)品試加工,求選取的2個全部來自乙種植基地的概率;
(3)根據(jù)該加工企業(yè)的加工和銷售記錄,了解到來自乙種植基地的鮮切花的加工產(chǎn)品的單件利潤為4元;來自乙種植基地的鮮切花
的加工產(chǎn)品的單件成本為10元,銷售率(某等級產(chǎn)品的銷量與產(chǎn)量的比值)及單價如下表所示.
三級花加工產(chǎn)品 | 二級花加工產(chǎn)品 | 一級花加工產(chǎn)品 | |
銷售率 | |||
單價/(元/件) | 12 | 16 | 20 |
由于鮮切花加工產(chǎn)品的保鮮特點,未售出的產(chǎn)品均可按原售價的50%處理完畢.用樣本估計總體,如果僅從單件產(chǎn)品的利潤的角度考慮,該鮮切花加工企業(yè)應(yīng)該從哪個種植基地購進鮮切花
?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年
月
日,國務(wù)院總理李克強在做政府工作報告時說,打好精準脫貧攻堅戰(zhàn).江西省貧困縣脫貧摘帽取得突破性進展:
年,穩(wěn)定實現(xiàn)扶貧對象“兩不愁、三保障”,貧困縣全部退出.圍繞這個目標,江西正著力加快增收步伐,提高救助水平,改善生活條件,打好產(chǎn)業(yè)扶貧、保障扶貧、安居扶貧三場攻堅戰(zhàn).為響應(yīng)國家政策,老張自力更生開了一間小型雜貨店.據(jù)長期統(tǒng)計分析,老張的雜貨店中某貨物每天的需求量
在
與
之間,日需求量
(件)的頻率
分布如下表所示:
己知其成本為每件元,售價為每件
元若供大于求,則每件需降價處理,處理價每件
元.
(1)設(shè)每天的進貨量為,視日需求量
的頻率為概率
,求在每天進貨量為
的條件下,日銷售量
的期望值
(用
表示);
(2)在(1)的條件下,寫出和
的關(guān)系式,并判斷
為何值時,日利潤的均值最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.若g(x)存在2個零點,則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.“”是“點
到直線
的距離為3”的充要條件
B.直線的傾斜角的取值范圍為
C.直線與直線
平行,且與圓
相切
D.離心率為的雙曲線的漸近線方程為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機詢問200名性別不同的大學(xué)生是否愛好踢毽子運動,計算得到統(tǒng)計量的觀測值
,參照附表,得到的正確結(jié)論是( )
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
A.有97.5%以上的把握認為“愛好該項運動與性別有關(guān)”
B.有97.5%以上的把握認為“愛好該項運動與性別無關(guān)”
C.在犯錯誤的概率不超過5%的前提下,認為“愛好該項運動與性別有關(guān)”
D.在犯錯誤的概率不超過5%的前提下,認為“愛好該項運動與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)
,若滿足:對任意
,存在常數(shù)
,都有
成立,則稱
是
上的有界函數(shù),其中
稱為函數(shù)
的上界
(1)設(shè),判斷
在
上是否是有界函數(shù),若是,說明理由,并寫出
所有上界的值的集合;若不是,也請說明理由.
(2)若函數(shù)在
上是以
為上界的有界函數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蜂巢是由工蜂分泌蜂蠟建成的從正面看,蜂巢口是由許多正六邊形的中空柱狀體連接而成,中空柱狀體的底部是由三個全等的菱形面構(gòu)成,菱形的一個角度是,這樣的設(shè)計含有深刻的數(shù)學(xué)原理、我國著名數(shù)學(xué)家華羅庚曾專門研究蜂巢的結(jié)構(gòu)著有《談?wù)勁c蜂房結(jié)構(gòu)有關(guān)的數(shù)學(xué)問題》.用數(shù)學(xué)的眼光去看蜂巢的結(jié)構(gòu),如圖,在六棱柱
的三個頂點A,C,E處分別用平面BFM,平面BDO,平面DFN截掉三個相等的三棱錐
,
,
,平面BFM,平面BDO,平面DFN交于點P,就形成了蜂巢的結(jié)構(gòu).如圖,設(shè)平面PBOD與正六邊形底面所成的二面角的大小為
,則有:( )
A.B.
C.D.以上都不對
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com