日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (理)C1(a>b>0)左右焦點分別為F1,F(xiàn)2,右頂點為A,P為C1上任意一點,的最大值的取值范圍為[c2,3c2],c=

          (1)求點C1的離心率e的范圍;

          (2)設(shè)雙曲線C2以C1的焦點為頂點,頂點為焦點,B是雙曲線C2在第一象限上任意一點,當(dāng)e取最小值時,猜想是否存在常數(shù)λ(λ>0),使∠BAF1=λ∠BF1A恒成立?若存在,求出λ的值;若不存在,說明理由.

          答案:
          解析:

            (理)(1)P(x,y),=x2+y2-c2=c2x2/a2+b2-c2,當(dāng)x2=a2時,c2≤b2≤3c2,1/2≤e≤/2

            (2)e=1/2,C2:3x2-y2=3c2,A(2c,0),B(x0,y0)(x0,y0>0),AB⊥x軸時,λ=2,猜想λ=2;x0≠2c時

            tan∠BAF1=-,tan∠BF1A=,由倍角公式得出結(jié)論,存在λ=2滿足條件


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2008•楊浦區(qū)二模)(理)在平面直角坐標系xoy中,若在曲線C1的方程F(x,y)=0中,以(λx,λy)(λ為正實數(shù))代替(x,y)得到曲線C2的方程F(λx,λy)=0,則稱曲線C1、C2關(guān)于原點“伸縮”,變換(x,y)→(λx,λy)稱為“伸縮變換”,λ稱為伸縮比.
          (1)已知曲線C1的方程為
          x2
          9
          -
          y2
          4
          =1
          ,伸縮比λ=2,求C1關(guān)于原點“伸縮變換”后所得曲線C2的方程;
          (2)射線l的方程y=
          2
          2
          x(x≥0)
          ,如果橢圓C1
          x2
          16
          +
          y2
          4
          =1
          經(jīng)“伸縮變換”后得到橢圓C2,若射線l與橢圓C1、C2分別交于兩點A、B,且|AB|=
          2
          ,求橢圓C2的方程;
          (3)對拋物線C1:y2=2p1x,作變換(x,y)→(λ1x,λ1y),得拋物線C2:y2=2p2x;對C2作變換(x,y)→(λ2x,λ2y)得拋物線C3:y2=2p3x,如此進行下去,對拋物線Cn:y2=2pnx作變換(x,y)→(λnx,λny),得拋物線Cn+1:y2=2pn+1x,….若p1=1 , λn=(
          1
          2
          )n
          ,求數(shù)列{pn}的通項公式pn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•崇明縣二模)(理)若已知曲線C1方程為x2-
          y2
          8
          =1(x≥0,y≥0)
          ,圓C2方程為(x-3)2+y2=1,斜率為k(k>0)直線l與圓C2相切,切點為A,直線l與曲線C1相交于點B,|AB|=
          3
          ,則直線AB的斜率為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (08年山東卷理)設(shè)橢圓C1的離心率為,焦點在x軸上且長軸長為26.若曲線C2上的點到橢圓C1的兩個焦點的距離的差的絕對值等于8,則曲線C2的標準方程為

          (A)                                 (B)

          (C)                                    (D)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2008年上海市楊浦區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

          (理)在平面直角坐標系xoy中,若在曲線C1的方程F(x,y)=0中,以(λx,λy)(λ為正實數(shù))代替(x,y)得到曲線C2的方程F(λx,λy)=0,則稱曲線C1、C2關(guān)于原點“伸縮”,變換(x,y)→(λx,λy)稱為“伸縮變換”,λ稱為伸縮比.
          (1)已知曲線C1的方程為,伸縮比λ=2,求C1關(guān)于原點“伸縮變換”后所得曲線C2的方程;
          (2)射線l的方程,如果橢圓C1經(jīng)“伸縮變換”后得到橢圓C2,若射線l與橢圓C1、C2分別交于兩點A、B,且,求橢圓C2的方程;
          (3)對拋物線C1:y2=2p1x,作變換(x,y)→(λ1x,λ1y),得拋物線C2:y2=2p2x;對C2作變換(x,y)→(λ2x,λ2y)得拋物線C3:y2=2p3x,如此進行下去,對拋物線Cn:y2=2pnx作變換(x,y)→(λnx,λny),得拋物線Cn+1:y2=2pn+1x,….若,求數(shù)列{pn}的通項公式pn

          查看答案和解析>>

          同步練習(xí)冊答案