日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (I)求函數(shù)f(x)=log3(1+x)+
          3-4x
          的定義域;
          (2)判斷并證明函數(shù)f(x)=x+
          4
          x
          的奇偶性
          (3)證明函數(shù) f(x)=x+
          4
          x
           在x∈[2,+∞)上是增函數(shù),并求f(x)在[4,8]上的值域.
          分析:(1)由
          1+x>0
          3-4x≥0
          可求得其定義域;
          (2)由奇函數(shù)的定義f(-x)=-x-
          4
          x
          =-(x+
          4
          x
          )=-f(x),可判斷f(x)為奇函數(shù);
          (3)利用單調(diào)函數(shù)的定義,設(shè)2<x1<x2,作差f(x1)-f(x2)化積判斷符號即可.
          解答:解:(Ⅰ)由
          1+x>0
          3-4x≥0
          得-1<x≤
          3
          4
          ,
          ∴求函數(shù)f(x)=log3(1+x)+
          3-4x
          的定義域?yàn)椋簕  x|-1<x≤
          3
          4
          }-----(3分)
          (2)f(x)=x+
          4
          x
          為奇函數(shù)---------(4分)
          證明:∵f(-x)=-x-
          4
          x
          =-(x+
          4
          x
          )=-f(x),
          ∴f(x)=x+
          4
          x
          為奇函數(shù).---------(5分)
          (3)證明:設(shè)2<x1<x2
          f(x1)-f(x2)=x1+
          4
          x1
          -x2-
          4
          x2

          =x1-x2-
          4(x1-x2
          x1x2

          =(x1-x2)(1-
          4
          x1x2
          )…(2分)
          ∵2<x1<x2,
          ∴x1-x2<0,x1x2>4,即0<
          4
          x1x2
          <1.
          ∴1-
          4
          x1x2
          >0,
          ∴f(x1)-f(x2)<0,即f(x1)<f(x2);
          ∴f(x)是增函數(shù).
          由(1)知f(x)在[4,8]上是增函數(shù)…(6分)
          ∴f(x)max=f(8)=
          17
          2
          ,f(x)min=f(4)=5.
          ∴f(x)在[4,8]上的值域?yàn)閇5,
          17
          2
          ].(8分)
          點(diǎn)評:本題考查奇偶性與單調(diào)性的綜合,著重考查函數(shù)的奇偶性與單調(diào)性的定義及其應(yīng)用,突出轉(zhuǎn)化思想的運(yùn)用,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=sin2x+xcosx+2cos2x,xR.

          (I)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;

          (Ⅱ)函數(shù)f(x)的圖象可以由函數(shù)y=sin2x(x∈R)的圖象經(jīng)過怎樣的變換得到?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)(其中

              (I)求函數(shù)f(x)的反函數(shù)

              (II)設(shè),求函數(shù)g(x)最小值及相應(yīng)的x值;

              (III)若不等式對于區(qū)間上的每一個x值都成立,求實(shí)數(shù)m的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

           

           (本小題共12分)

            已知函數(shù)。

           。↖)求函數(shù)f(x)的最小正周期;

           。↖I)當(dāng)時,求函數(shù)f(x)的最大值、最小值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(天津卷解析版) 題型:解答題

          已知函數(shù)其中a>0.

          (I)求函數(shù)f(x)的單調(diào)區(qū)間;

          (II)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點(diǎn),求a的取值范圍;

          (III)當(dāng)a=1時,設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值。

          【考點(diǎn)定位】本小題主要考查導(dǎo)數(shù)的運(yùn)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、函數(shù)的零點(diǎn),函數(shù)的最值等基礎(chǔ)知識.考查函數(shù)思想、分類討論思想.考查綜合分析和解決問題的能力.

           

          查看答案和解析>>

          同步練習(xí)冊答案