日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的方程為雙曲線的兩條漸近線為,過橢圓的右焦點作直線,使得于點,又交于點與橢圓的兩個交點從上到下依次為(如圖).

           (1)當(dāng)直線的傾斜角為,雙曲線的焦距為8時,求橢圓的方程;

          (2)設(shè),證明:為常數(shù).

           

           

           

          【答案】

          解:(1)由已知,

          解得:,          所以橢圓的方程是:.   

          (2)解法1:設(shè)

          由題意得: 直線的方程為: ,直線的方程為: ,

          則直線的方程為: ,其中點的坐標(biāo)為;

          由    得:     ,則點;

          由  消y得:,則;

          得:,則:,

          同理由得:,

          為常數(shù).

          【解析】略

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•淮南二模)已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1,(a>b>0)與雙曲4x2-
          4
          3
          y2=1有相同的焦點,且橢C的離心e=
          1
          2
          ,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
          (1)求橢圓的方程;
          (2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標(biāo);
          (3)求點P在直線MB上射R的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓C:數(shù)學(xué)公式+數(shù)學(xué)公式=1,(a>b>0)與雙曲4x2-數(shù)學(xué)公式y2=1有相同的焦點,且橢C的離心e=數(shù)學(xué)公式,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
          (1)求橢圓的方程;
          (2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標(biāo);
          (3)求點P在直線MB上射R的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年安徽省淮北市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

          已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
          (1)求橢圓的方程;
          (2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標(biāo);
          (3)求點P在直線MB上射R的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年安徽省淮南市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

          已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
          (1)求橢圓的方程;
          (2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標(biāo);
          (3)求點P在直線MB上射R的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年安徽省淮北市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

          已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
          (1)求橢圓的方程;
          (2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標(biāo);
          (3)求點P在直線MB上射R的軌跡方程.

          查看答案和解析>>

          同步練習(xí)冊答案