日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線方程為焦點,為拋物線準(zhǔn)線上一點,為線段與拋物線的交點,定義:.

          (1)當(dāng)時,求;

          (2)證明:存在常數(shù),使得.

          (3)為拋物線準(zhǔn)線上三點,且,判斷的關(guān)系.

          【答案】(1);(2)證明見解析;(3).

          【解析】

          1)根據(jù),可以求出直線的斜率,這樣可以求出直線的方程,與拋物線方程聯(lián)立,求出的坐標(biāo),求出的值;

          2)當(dāng),可以求出的值;由拋物線的對稱性,可設(shè),

          設(shè)出直線的方程,與拋物線方程聯(lián)立,可以求出的坐標(biāo),可以證明出,這樣就證明出存在常數(shù),使得;

          3)設(shè),利用拋物線的定義,計算

          用作差法比較的大小,最后用作差法比較

          的大小,最后判斷出.

          (1)因為.

          聯(lián)立方程

          .

          (2)當(dāng),易得,

          不妨設(shè),,

          直線,則,

          聯(lián)立,

          .

          (3)設(shè),則

          ,

          因為

          ,

          又因

          所以.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知曲線的方程為,集合,若對于任意的,都存在,使得成立,則稱曲線曲線,下列方程所表示的曲線中,是曲線的有______(寫出所有曲線的序號)

          ;②;③;④;⑤.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓,其中,點是橢圓的右頂點,射線與橢圓的交點為.

          1)求點的坐標(biāo);

          2)設(shè)橢圓的長半軸、短半軸的長分別為、,當(dāng)的值在區(qū)間中變化時,求的取值范圍;

          3)在(2)的條件下,以為焦點,為頂點且開口方向向左的拋物線過點,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司航拍宣傳畫報,為了凸顯公司文化,選擇如圖所示的邊長為2百米的正三角形空地進(jìn)行布置拍攝場景,在的中點處安裝中央聚光燈,為邊上得可以自由滑動的動點,其中設(shè)置為普通色彩燈帶(燈帶長度可以自由伸縮),線段部分需要材料 (單位:百米)裝飾用以增加拍攝效果因材料價格昂貴,所以公司要求采購材料使用不造成浪費.

          (1)當(dāng),垂直時,采購部需要采購多少百米材料?

          (2)為了增加拍攝動態(tài)效果需要,現(xiàn)要求點邊上滑動,且,則購買材料的范圍是多少才能滿足動態(tài)效果需要又不會造成浪費.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)定義在上的函數(shù).

          (1)求函數(shù)的單調(diào)區(qū)間;

          (2)若存在,使得成立,求實數(shù)的取值范圍;

          (3)定義:如果實數(shù)滿足, 那么稱更接近.對于(2)中的,問:哪個更接近?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐的底面是菱形,底面,分別是的中點,,.

          I)證明:;

          II)求直線與平面所成角的正弦值;

          III)在邊上是否存在點,使所成角的余弦值為,若存在,確定點位置;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,對于點,若函數(shù)滿足:,都有,就稱這個函數(shù)是點的“限定函數(shù)”.以下函數(shù):①,②,③,④,其中是原點的“限定函數(shù)”的序號是______.已知點在函數(shù)的圖象上,若函數(shù)是點的“限定函數(shù)”,則的取值范圍是______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某商場營銷人員進(jìn)行某商品的市場營銷調(diào)查時發(fā)現(xiàn),每回饋消費者一定的點數(shù),該商品每天的銷量就會發(fā)生一定的變化,經(jīng)過試點統(tǒng)計得到以下表:

          反饋點數(shù)t

          1

          2

          3

          4

          5

          銷量(百件)/天

          0.5

          0.6

          1

          1.4

          1.7

          (Ⅰ)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合當(dāng)?shù)卦撋唐蜂N量(千件)與返還點數(shù)之間的相關(guān)關(guān)系.試預(yù)測若返回6個點時該商品每天的銷量;

          (Ⅱ)若節(jié)日期間營銷部對商品進(jìn)行新一輪調(diào)整.已知某地擬購買該商品的消費群體十分龐大,經(jīng)營銷調(diào)研機構(gòu)對其中的200名消費者的返點數(shù)額的心理預(yù)期值進(jìn)行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:

          返還點數(shù)預(yù)期值區(qū)間

          (百分比)

          [1,3)

          [3,5)

          [5,7)

          [7,9)

          [9,11)

          [11,13)

          頻數(shù)

          20

          60

          60

          30

          20

          10

          將對返點點數(shù)的心理預(yù)期值在的消費者分別定義為“欲望緊縮型”消費者和“欲望膨脹型”消費者,現(xiàn)采用分層抽樣的方法從位于這兩個區(qū)間的30名消費者中隨機抽取6名,再從這6人中隨機抽取3名進(jìn)行跟蹤調(diào)查,求抽出的3人中至少有1名“欲望膨脹型”消費者的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,三角形ABC為直角三角形,且,,EF分別為AB,AC的中點,G,H分別為BEAF的中點(如圖一),現(xiàn)在沿EF將三角形AEF折起至,連接,,GH(如圖二).

          1)證明:平面;

          2)當(dāng)平面平面EFCB時,求異面直線GHEF所成角的余弦值.

          查看答案和解析>>

          同步練習(xí)冊答案