日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,已知正四棱柱ABCD-A1B1C1D1的底面邊長(zhǎng)為1,點(diǎn)E在棱AA1上,A1C∥平面EBD,截面EBD的面積為
          (1)A1C與底面ABCD所成角的大;
          (2)若AC與BD的交點(diǎn)為M,點(diǎn)T在CC1上,且MT⊥BE,求MT的長(zhǎng).

          【答案】分析:(1)連接EM,根據(jù)線(xiàn)面平行的性質(zhì)可知A1C∥EM,易知∠A1CA為A1C與底面ABCD的所成角,在△A1CA中,求出此角即可;
          (2)建立直角坐標(biāo)系D-xyz則求出E,B,M的坐標(biāo),設(shè)T點(diǎn)的坐標(biāo)為(0,1,z),根據(jù)BE⊥MT則=0求出z,根據(jù)向量的模就是線(xiàn)段的長(zhǎng)即可求出MT的長(zhǎng).
          解答:解:(1)如圖所示,連接EM因?yàn)锳1C∥平面EBD,平面A1CA∩平面EBD=EM,
          所以A1C∥EM;又M為AC的中點(diǎn),故E為AA1的中點(diǎn)
          ∴S△EBD=וME=則ME=1
          ∵AA1⊥底面ABCD∴∠A1CA為A1C與底面ABCD的所成角
          在△A1CA中,A1C=2EM=2
          cos∠A1CA=
          ∴A1C與底面ABCD所成角的大小45°
          (2)如圖建立直角坐標(biāo)系D-xyz則E(1,0,),B(1,1,0),M(,,0)設(shè)T點(diǎn)的坐標(biāo)為(0,1,z)
          =(0,-1,),=(-,,z)
          ∵BE⊥MT∴=0
          +z=0
          ∴z=∴點(diǎn)T的坐標(biāo)為(0,1,
          =(-,)∴||=1
          故MT=1
          點(diǎn)評(píng):本題考查直線(xiàn)與平面平行的性質(zhì),直線(xiàn)與平面所成的角,線(xiàn)段長(zhǎng)的度量,考查空間想象能力,邏輯思維能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖所示,已知正四棱柱ABCD-A1B1C1D1的底面邊長(zhǎng)為1,點(diǎn)E在棱AA1上,A1C∥平面EBD,截面EBD的面積為
          2
          2

          (1)A1C與底面ABCD所成角的大;
          (2)若AC與BD的交點(diǎn)為M,點(diǎn)T在CC1上,且MT⊥BE,求MT的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示,已知正四棱柱ABCDA1B1C1D1 AB=1,AA1=2,點(diǎn)ECC1中點(diǎn),點(diǎn)FBD1中點(diǎn).

          (1)證明EFBD1CC1的公垂線(xiàn);

          (2)求點(diǎn)D1到平面BDE的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省高二上期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

          如圖所示,已知正四棱錐側(cè)棱長(zhǎng)為,底面邊長(zhǎng)為,的中點(diǎn),則異面直線(xiàn)所成角的大小為(   )

          A.       B.       C.      D.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示,已知正四棱柱ABCD―A1B1C1D1的底面邊長(zhǎng)為4,AA1=6,Q為BBl的中點(diǎn),PDDl,MAlB1,N∈ClD1,A1M=1,D1N=3.

          (1)當(dāng)P為DD1的中點(diǎn)時(shí),求二面角M―PN―D1的大;

          (2)在DD1上是否存在點(diǎn)P,使QD1⊥PMN面?若存在,求出點(diǎn)P的位置;若不存在,說(shuō)明理由;

          (3)若P為DD1的中點(diǎn),求三棱錐Q―PMN的體積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案