日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在三棱錐中, , 底面, ,且.

          (1)若上一點(diǎn),且,證明:平面平面.

          (2)若為棱上一點(diǎn),且平面,求三棱錐的體積.

          【答案】1見解析;(2

          【解析】試題分析:(1平面可得,又, 所以平面,根據(jù)面面垂直的判定定理得平面平面。2中,由余弦定理得

          ,根據(jù)勾股定理可得AB=3,BC=1,PB=2,由平面可得,從而得到,故BD=1.過,,為三棱錐的高,且由三棱錐的體積公式可得。

          試題解析:

          1證明:∵ 平面, 平面

          .

          ,

          平面.

          平面,

          平面平面.

          (2)解:

          中,由余弦定理得

          ,

          ,

          由條件得 解得

          平面 平面,平面平面,

          ,

          .

          ,img src="http://thumb.zyjl.cn/questionBank/Upload/2017/12/29/18/b0e15a69/SYS201712291828428337502978_DA/SYS201712291828428337502978_DA.053.png" width="28" height="17" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,為三棱錐的高,則.

          ,

          .

          即三棱錐的體積為。

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

          甲說:“是作品獲得一等獎(jiǎng)”;

          乙說:“作品獲得一等獎(jiǎng)”;

          丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;

          丁說:“是作品獲得一等獎(jiǎng)”.

          若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,矩形ABCD所在的半平面和直角梯形CDEF所在的半平面成60°的二面角,DE∥CF,CD⊥DE,AD=2, ,CF=6,∠CFE=45°.
          (Ⅰ)求證:BF∥平面ADE;
          (Ⅱ)在線段CF上求一點(diǎn)G,使銳二面角B﹣EG﹣D的余弦值為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)的圖象與軸相切,且切點(diǎn)在軸的正半軸上.

          (1)若函數(shù)上的極小值不大于,求的取值范圍;

          (2)設(shè),證明: 上的最小值為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,A,B兩點(diǎn)5條連線并聯(lián),它們?cè)趩挝粫r(shí)間內(nèi)能通過的最大信息量依次為2,3,4,3,2.現(xiàn)記從中任取三條線且在單位時(shí)間內(nèi)都通過的最大信息總量為ξ,則P(ξ≥8)=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在正四棱錐中,已知異面直線所成的角為,給出下面三個(gè)命題:

          :若,則此四棱錐的側(cè)面積為

          :若分別為的中點(diǎn),則平面

          :若都在球的表面上,則球的表面積是四邊形面積的倍.

          在下列命題中,為真命題的是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,李先生家住H小區(qū),他工作在C科技園區(qū),從家開車到公司上班路上有L1、L2兩條路線,L1路線上有A1、A2、A3三個(gè)路口,各路口遇到紅燈的概率均為 ;L2路線上有B1、B2兩個(gè)路口,各路口遇到紅燈的概率依次為 ,

          (1)若走L1路線,求最多遇到1次紅燈的概率;
          (2)若走L2路線,求遇到紅燈次數(shù)X的數(shù)學(xué)期望;
          (3)按照“平均遇到紅燈次數(shù)最少”的要求,請(qǐng)你幫助李先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐P﹣ABCD底面是正方形,PA⊥底面ABCD,E,F(xiàn)分別為PA,PD中點(diǎn).

          (1)求證:EF∥面PBC
          (2)求證:平面PBC⊥平面PAB.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) .

          (1)求的單調(diào)區(qū)間;

          (2)當(dāng)時(shí),,求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案