【題目】如圖,在三棱錐中,
,
底面
,
,且
.
(1)若為
上一點(diǎn),且
,證明:平面
平面
.
(2)若為棱
上一點(diǎn),且
平面
,求三棱錐
的體積.
【答案】(1)見解析;(2)
【解析】試題分析:(1)由平面
可得
,又
,
,所以
平面
,根據(jù)面面垂直的判定定理得平面
平面
。(2)在
中,由余弦定理得
,根據(jù)勾股定理可得AB=3,BC=1,PB=2,由
平面
可得
,從而得到
,故BD=1.過
作
,交
于
,則
為三棱錐
的高,且
由三棱錐的體積公式可得
。
試題解析:
(1)證明:∵ 平面
,
平面
∴.
又,
,
∴平面
.
∵平面
,
∴ 平面平面
.
(2)解:
在中,由余弦定理得
,
∴,
由條件得 解得
∵平面
,
平面
,平面
平面
,
∴,
∴.
過作
,交img src="http://thumb.zyjl.cn/questionBank/Upload/2017/12/29/18/b0e15a69/SYS201712291828428337502978_DA/SYS201712291828428337502978_DA.053.png" width="28" height="17" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />于
,則
為三棱錐
的高,則
.
∵,
∴ .
即三棱錐的體積為
。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,
,
,
四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說:“是或
作品獲得一等獎(jiǎng)”;
乙說:“作品獲得一等獎(jiǎng)”;
丙說:“,
兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說:“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD所在的半平面和直角梯形CDEF所在的半平面成60°的二面角,DE∥CF,CD⊥DE,AD=2, ,CF=6,∠CFE=45°.
(Ⅰ)求證:BF∥平面ADE;
(Ⅱ)在線段CF上求一點(diǎn)G,使銳二面角B﹣EG﹣D的余弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象與
軸相切,且切點(diǎn)在
軸的正半軸上.
(1)若函數(shù)在
上的極小值不大于
,求
的取值范圍;
(2)設(shè),證明:
在
上的最小值為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A,B兩點(diǎn)5條連線并聯(lián),它們?cè)趩挝粫r(shí)間內(nèi)能通過的最大信息量依次為2,3,4,3,2.現(xiàn)記從中任取三條線且在單位時(shí)間內(nèi)都通過的最大信息總量為ξ,則P(ξ≥8)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四棱錐中,已知異面直線
與
所成的角為
,給出下面三個(gè)命題:
:若
,則此四棱錐的側(cè)面積為
;
:若
分別為
的中點(diǎn),則
平面
;
:若
都在球
的表面上,則球
的表面積是四邊形
面積的
倍.
在下列命題中,為真命題的是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,李先生家住H小區(qū),他工作在C科技園區(qū),從家開車到公司上班路上有L1、L2兩條路線,L1路線上有A1、A2、A3三個(gè)路口,各路口遇到紅燈的概率均為 ;L2路線上有B1、B2兩個(gè)路口,各路口遇到紅燈的概率依次為
,
.
(1)若走L1路線,求最多遇到1次紅燈的概率;
(2)若走L2路線,求遇到紅燈次數(shù)X的數(shù)學(xué)期望;
(3)按照“平均遇到紅燈次數(shù)最少”的要求,請(qǐng)你幫助李先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD底面是正方形,PA⊥底面ABCD,E,F(xiàn)分別為PA,PD中點(diǎn).
(1)求證:EF∥面PBC
(2)求證:平面PBC⊥平面PAB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com