日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓O:x2+y2=2交x軸于AB兩點(diǎn),曲線C是以AB為長(zhǎng)軸,離心率為的橢圓,其左焦點(diǎn)為F.P是圓O上一點(diǎn),連結(jié)PF,過原點(diǎn)O作直線PF的垂線交橢圓C的左準(zhǔn)線于點(diǎn)Q

          (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

          (Ⅱ)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓O相切;

          (Ⅲ)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與AB重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說明理由.

          答案:
          解析:

            解:(Ⅰ)因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/1414/0022/ad0b7a7773771eeb3a07a080fce1dbb3/C/Image162.gif" width=101 height=45>,所以c=1

            則b=1,即橢圓的標(biāo)準(zhǔn)方程為

            (Ⅱ)因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/1414/0022/ad0b7a7773771eeb3a07a080fce1dbb3/C/Image165.gif" width=16 HEIGHT=17>(1,1),所以,所以,所以直線OQ的方程為y=-2x

            又橢圓的左準(zhǔn)線方程為x=-2,所以點(diǎn)Q(-2,4)

            所以,又,所以,即

            故直線與圓相切

            (Ⅲ)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),直線與圓保持相切

            證明:設(shè)(),則,所以,,

            所以直線OQ的方程為

            所以點(diǎn)Q(-2,)

            所以,又,

            所以,即,故直線始終與圓相切


          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:遼寧省沈陽(yáng)二中2011-2012學(xué)年高二上學(xué)期期中考試數(shù)學(xué)文科試題 題型:013

          已知圓O:x2+y2=1,點(diǎn)P在直線上,O為坐標(biāo)原點(diǎn),若圓O上存在點(diǎn)Q,使∠OPQ=30°,則點(diǎn)P的縱坐標(biāo)y0的取值范圍是

          [  ]
          A.

          [-2,2]

          B.

          [0,2]

          C.

          [-1,1]

          D.

          [0,1]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

                 已知圓O:x2+y2=1,圓C:(x-4)2+(y-4)2=1,由兩圓外一點(diǎn)P(a,b)引兩圓切線PA、PB,切點(diǎn)分別為A、B,如圖,滿足|PA|=|PB|;

                 (Ⅰ)將兩圓方程相減可得一直線方程l:x+y-4=0,該直線叫做這兩圓的“根軸”,試證點(diǎn)P落在根軸上;

                 (Ⅱ)求切線長(zhǎng)|PA|的最小值;

          (Ⅲ)給出定點(diǎn)M(0,2),設(shè)P、Q分別為直線l和圓O上動(dòng)點(diǎn),求|MP|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓Ox2y2=1和定點(diǎn)A(2,1),由圓O外一點(diǎn)P(a,b)向圓O引切線PQ,切點(diǎn)為Q,|PQ|=|PA|成立,如圖.

          (1)求a、b間關(guān)系;

          (2)求|PQ|的最小值;

          (3)以P為圓心作圓,使它與圓O有公共點(diǎn),試在其中求出半徑最小的圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

           已知圓Ox2y2=1和定點(diǎn)A(2,1),由圓O外一點(diǎn)P(a,b)向圓O引切線PQ,切點(diǎn)為Q,|PQ|=|PA|成立,如圖.

          (1)求a、b間關(guān)系;

          (2)求|PQ|的最小值;

          (3)以P為圓心作圓,使它與圓O有公共點(diǎn),試在其中求出半徑最小的圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓O:x2+y2=1,圓C:(x-2)2+(y-4)2=1,由兩圓外一點(diǎn)P(a,b)引兩圓切線PA、PB,切點(diǎn)分別為A、B,如圖,滿足|PA|=|PB|.

          (1)求實(shí)數(shù)a、b間滿足的等量關(guān)系;

          (2)求切線長(zhǎng)|PA|的最小值;

          (3)是否存在以P為圓心的圓,使它與圓O相內(nèi)切并且與圓C相外切?若存在,求出圓P的方程;若不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案