日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知m∈R,命題p:對(duì)任意x∈[0,1],不等式2x-2≥m2-3m恒成立;命題q:存在x∈[-1,1],使得m≤ax成立
          (Ⅰ)若p為真命題,求m的取值范圍;
          (Ⅱ)當(dāng)a=1,若p且q為假,p或q為真,求m的取值范圍.
          (Ⅲ)若a>0且p是q的充分不必要條件,求a的取值范圍.
          分析:(Ⅰ)由對(duì)任意x∈[0,1],不等式2x-2≥m2-3m恒成立,知m2-3m≤-2,由此能求出m的取值范圍.
          (Ⅱ)由a=1,且存在x∈[-1,1],使得m≤ax成立,推導(dǎo)出命題q滿足m≤1,由p且q為假,p或q為真,知p、q一真一假.由此能求出a的范圍.
          (Ⅲ)由a>0存在x∈[-1,1],使得m≤ax成立,知命題q滿足m≤a,再由p是q的充分不必要條件,能求出a的范圍.
          解答:解:(Ⅰ)∵對(duì)任意x∈[0,1],不等式2x-2≥m2-3m恒成立
          (2x-2)minm2-3m,
          即m2-3m≤-2,
          解得1≤m≤2,
          即p為真命題時(shí),m的取值范圍是[1,2].
          (Ⅱ)∵a=1,且存在x∈[-1,1],使得m≤ax成立
          ∴m≤1
          即命題q滿足m≤1.
          ∵p且q為假,p或q為真
          ∴p、q一真一假.
          當(dāng)p真q假時(shí),則
          1≤m≤2
          m>1
          ,即1<m≤2,
          當(dāng)p假q真時(shí),
          m<1或m>2
          m≤1
          ,即m<1.
          綜上所述,m<1或1<m≤2.
          (Ⅲ)∵a>0存在x∈[-1,1],使得m≤ax成立,
          ∴命題q滿足m≤a,
          ∵p是q的充分不必要條件,
          ∴a≥2.
          點(diǎn)評(píng):本題考查滿足條件的實(shí)數(shù)的取值范圍的求法,解題時(shí)要認(rèn)真審題,注意不等式的性質(zhì)的合理運(yùn)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•湖南模擬)已知函數(shù)f(x)=
          -x-1(x<-2)
          x+3(-2≤x≤
          1
          2
          )
          5x+1(x>
          1
          2
          )
          (x∈R),
          (Ⅰ)求函數(shù)f(x)的最小值;
          (Ⅱ)已知m∈R,命題p:關(guān)于x的不等式f(x)≥m2+2m-2對(duì)任意x∈R恒成立;命題q:函數(shù)y=(m2-1)x是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=|2x-1|+|x+2|+2x(x∈R),
          (1)求函數(shù)f(x)的最小值;
          (2)已知m∈R,命題p:關(guān)于x的不等式f(x)≥m2+2m-2對(duì)任意x∈R恒成立;命題q:不等式|x-1|+|x-m|>1  對(duì)任意x∈R恒成立.若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知m∈R,命題p:對(duì)任意x∈[0,8],不等式log
          1
          3
          (x+1)≥m2-3m
          恒成立;命題q:對(duì)任意x∈(0,
          2
          3
          π)
          ,不等式1+sin2x-cos2x≤2mcos(x-
          π
          4
          )
          恒成立.
          (Ⅰ)若p為真命題,求m的取值范圍;
          (Ⅱ)若p且q為假,p或q為真,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知m∈R,命題p:方程
          x
          2
           
          m-2
          +
          y
          2
           
          6-m
          =1表示橢圓,命題q:
          m
          2
           
          -5m+6<0
          ,則命題p是命題q成立的(  )條件.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案