【題目】直線過點
,與
軸,
軸的正半軸分布交于
兩點,
為坐標(biāo)原點.
(1)當(dāng)直線的斜率
時,求
的外接圓的面積;
(2)當(dāng)的面積最小時,求直線的方程.
【答案】(1);(2)
.
【解析】
試題分析:對問題(1),首先根據(jù)題目條件求出直線的方程,在此基礎(chǔ)上求出直角三角形的斜邊長,即
的外接圓的直徑,進而可求出
的外接圓的面積;對于問題(2),首先設(shè)出直線的方程,并用斜率
表示出
的面積,再結(jié)合基本不等式可求出
的面積最小時斜率
的值,進而可求得直線的方程.
試題解析:(1)由題知直線的方程為
,即
.............2分
可知,..................3分
且是直角三角形,
為斜邊,故
的外接圓半徑
..............4分
所以外接圓的面積......................5分
(2)由題知直線的斜率
存在,且
,設(shè)直線
,
令;令
,......................7分
,
由勾函數(shù)知,當(dāng)時,
最小..................9分
故直線的方程為
,即
....................10分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左右焦點分別為
,
,點
滿足
.
(Ⅰ) 求橢圓的離心率;
(Ⅱ) 設(shè)直線與橢圓相交于
兩點,若直線
與圓
相交于
,
兩點,且
,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為原點的直角坐標(biāo)系中,點
為
的直角頂點,已知
,且點
的縱坐標(biāo)大于0.
(1)求的坐標(biāo);
(2)求圓關(guān)于直線
對稱的圓
的方程;在直線
上是否存在點
,過點
的任意一條直線如果和圓
圓
都相交,則該直線被兩圓截得的線段長相等,如果存在求出點
的坐標(biāo),如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在
和
處的切線互相平行,求
的值;
(2)求的單調(diào)區(qū)間;
(3)設(shè),若對任意
,均存在
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列結(jié)論:
動點分別到兩定點(-3,0)、(3,0) 連線的斜率之乘積為
,設(shè)
的軌跡為曲線
,分別為曲線
的左、右焦點,則下列說法中:
(1)曲線的焦點坐標(biāo)為
;
(2)當(dāng)時,
的內(nèi)切圓圓心在直線
上;
(3)若,則
;
(4)設(shè),則
的最小值為
;
其中正確的序號是:_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為
,左、右頂點分別為
、
,
是橢圓上一點, 記直線
、
的斜率為
、
,且有
.
(1)求橢圓的方程;
(2)若直線與橢圓
交于
、
兩點, 以
、
為直徑的圓經(jīng)過原點, 且線段
的垂直平分線在
軸上的截距為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公司從某大學(xué)招收畢業(yè)生,經(jīng)過綜合測試,錄用了14名男生和6名女生,這20名畢業(yè)生的測試成績?nèi)缜o葉圖所示(單位:分),公司規(guī)定:成績在180分以上者到“甲部門”工作;180分以下者到“乙部門”工作.
(1)求男生成績的中位數(shù)及女生成績的平均值;
(2)如果用分層抽樣的方法從“甲部門”人選和“乙部門”人選中共選取5人,再從這5人中選2人,那么至少有一人是“甲部門”人選的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若為
的極值點,求實數(shù)
的值;
(Ⅱ)若在
上為增函數(shù),求實數(shù)
的取值范圍;
(III)當(dāng)時,方程
有實根,求實數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,側(cè)棱垂直于底面,
分別是
的中點.
(1)求證: 平面平面
;
(2)求證: 平面
;
(3)求三棱錐體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com