日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)集合S={a0,a1,a2,a3,a4},在
          OB
          上定義運算⊕為:ai⊕aj=ak,其中k為i+j被5除的余數(shù),i,j=0,1,2,3,4,則滿足關(guān)系式:(x⊕x)⊕a2=a0的x(x∈S)的個數(shù)為( 。
          分析:學(xué)生要讀懂題意:定義運算⊕為:ai⊕aj=ak,其中k為i+j被5除的余數(shù),i,j=0,1,2,3,4,,運用所給信息式x⊕x)⊕a2=a0解決問題,從而逐個驗證可得結(jié)論.
          解答:解:當x=A0時,(x⊕x)⊕A2=(A0⊕A0)⊕A2=A0⊕A2=A2≠A1
          當x=A1時,(x⊕x)⊕A2=(A1⊕A1)⊕A2=A2⊕A2=A4≠A1
          當x=A2時,(x⊕x)⊕A2=(A2⊕A2)⊕A2=A4⊕A2=A1
          當x=A3時,(x⊕x)⊕A2=(A3⊕A3)⊕A2=A1⊕A2=A3≠A1
          當x=A4時,(x⊕x)⊕A2=(A4⊕A4)⊕A2=A3⊕A2=A0≠A1
          故選D.
          點評:本題的考點是排列、組合及簡單的計數(shù)問題,主要考查學(xué)生的信息接收能力及應(yīng)用能力,對提高學(xué)生的思維能力很有好處
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          8、設(shè)集合S={A0,A1,A2,A3,A4},在S上定義運算⊙為:Ai⊙Aj=Ak,其中k=|i-j|,i,j=0,1,2,3,4.那么滿足條件(Ai⊙Aj)⊙A2=A1(Ai,Aj∈S)的有序數(shù)對(i,j)共有( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          12、設(shè)集合S={A0,A1,A2,A3,A4,A5},在S上定義運算“⊕”為:Ai⊕Aj=Ak,其中k為i+j被4除的余數(shù),i,j=0,1,2,3,4,5.則滿足關(guān)系式(x⊕x)⊕A2=A0的x(x∈S)的個數(shù)為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)集合S={A0,A1,A2,A3},在S上定義運算⊕為:Ai⊕Aj=Ak,其中k為i+j被4除的余數(shù),i,j=0,1,2,3.則滿足關(guān)系式(x⊕x)⊕A2=A0的x(x∈S)的個數(shù)為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)集合S={A0,A1,A2,A3},在S上定義運算⊕:Ai⊕Aj=Ak,其中k為i+j被4除的余數(shù),i,j=0,1,2,3,則使關(guān)系式(Ai⊕Ai)⊕Aj=A0成立的有序數(shù)對(i,j)的組數(shù)為( 。

          查看答案和解析>>

          同步練習(xí)冊答案