日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•安徽模擬)已知遞增等比數(shù)列{bn}滿足b2•b4=64,b5=32,數(shù)列{an}滿足an-bn=
          12n

          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù)列cn=nan,求數(shù)列{cn}的前n項(xiàng)和Tn
          分析:(Ⅰ)設(shè)公比為q,則由題意可得 b12 q5=64,且 b1q4=32,解得 b1 和 q的值,可得等比數(shù)列{bn}的通項(xiàng)公式,再由 {an}滿足an-bn=
          1
          2n
          ,求出數(shù)列{an}的通項(xiàng)公式.
          (Ⅱ)由數(shù)列cn=nan,可得數(shù)列{cn}的通項(xiàng)公式,從而求得數(shù)列{cn}的前n項(xiàng)和Tn=1×2+2×22+3×23+…+n•2n+
          n
          2
          .令 s=1×2+2×22+3×23+…+n•2n,用錯(cuò)位相減法求出s的值,即可求得 Tn=s+
          n
          2
          的值.
          解答:解:(Ⅰ)∵遞增等比數(shù)列{bn}滿足b2•b4=64,b5=32,設(shè)公比為q,則有  b12 q5=64,且 b1q4=32,
          解得 b1=2,q=2,bn=2n
          再由 {an}滿足an-bn=
          1
          2n
          ,可得 an=bn+
          1
          2n
          =2n+
          1
          2n

          (Ⅱ)∵數(shù)列cn=nan,∴cn =n 2n+
          1
          2

          ∴數(shù)列{cn}的前n項(xiàng)和Tn=1×2+2×22+3×23+…+n•2n+
          n
          2
           
          令 s=1×2+2×22+3×23+…+n•2n  ①,則 2s=1×22+2×23+3×24+…+n•2n+1  ②.
          ①-②可得-s=2+22+23+…+2n-n•2n+1=2n+1-2-n•2n+1,
          ∴s=(n-1)2n+1+2,∴Tn=s+
          n
          2
          =(n-1)2n+1+2+
          n
          2
          點(diǎn)評(píng):本題主要考查等比數(shù)列的定義和性質(zhì),等比數(shù)列的前n項(xiàng)和公式,用錯(cuò)位相減法對(duì)數(shù)列進(jìn)行求和,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•安徽模擬)在復(fù)平面內(nèi),復(fù)數(shù)z=
          1+i
          i-2
          對(duì)應(yīng)的點(diǎn)位于(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•安徽模擬)定義在R上的奇函數(shù)f(x)滿足:x≤0時(shí)f(x)=ax+b(a>0且a≠1),f(1)=
          1
          2
          ,則f(2)=(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•安徽模擬)(理)若變量x,y滿足約束條件
          x+y-3≤0
          x-y+1≥0
          y≥1
          ,則z=|y-2x|的最大值為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•安徽模擬)下列說(shuō)法不正確的是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•安徽模擬)已知f(x)=2
          3
          sinx+
          sin2x
          sinx

          (1)求f(x)的最大值,及當(dāng)取最大值時(shí)x的取值集合.
          (2)在三角形ABC中,a,b,c分別是角A,B,C所對(duì)的邊,對(duì)定義域內(nèi)任意x,有f(x)≤f(A),若a=
          3
          ,求
          AB
          AC
          的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案