日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四棱錐中,底面是直角梯形,,,側(cè)面是等腰直角三角形,,平面平面,點(diǎn)分別是棱上的點(diǎn),平面平面.

          (1)確定點(diǎn)的位置,并說(shuō)明理由;

          (2)求二面角的余弦值.

          【答案】(1)見(jiàn)解析;(2)

          【解析】分析:(1)因?yàn)槠矫?/span>平面,求得,又由,進(jìn)而得到

          點(diǎn)的中點(diǎn),又因?yàn)槠矫?/span>平面,得,得點(diǎn)的中點(diǎn);

          (2)以點(diǎn)為坐標(biāo)原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,求得平面,平面的法向量,利用向量的夾角公式,即可求解.

          詳解:(1)因?yàn)槠矫?/span>平面,平面平面,

          平面平面,

          所以,又因?yàn)?/span>

          所以四邊形是平行四邊形,

          所以,即點(diǎn)的中點(diǎn),

          因?yàn)槠矫?/span>平面,平面平面

          平面平面,

          所以,點(diǎn)的中點(diǎn),所以點(diǎn)的中點(diǎn),

          綜上,分別是的中點(diǎn).

          (2)因?yàn)?/span>,所以

          又因?yàn)槠矫?/span>平面,所以平面,

          ,所以.

          如圖以點(diǎn)為坐標(biāo)原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,

          ,,,,

          由中點(diǎn)公式得到

          設(shè)平面,平面的法向量分別為,,

          ,得:,

          ,得,

          ,得:

          ,得

          所以.

          綜上,二面角的余弦值是.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某企業(yè)擬用10萬(wàn)元投資甲、乙兩種商品.已知各投入萬(wàn)元,甲、乙兩種商品分別可獲得萬(wàn)元的利潤(rùn),利潤(rùn)曲線,如圖所示.

          (1)求函數(shù)的解析式;

          (2)應(yīng)怎樣分配投資資金,才能使投資獲得的利潤(rùn)最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】《算法統(tǒng)宗》是中國(guó)古代數(shù)學(xué)名著,由明代數(shù)學(xué)家程大位所著,該作完善了珠算口訣,確立了算盤用法,完成了由籌算到珠算的徹底轉(zhuǎn)變,該作中有題為“李白沽酒”“李白街上走,提壺去買酒。遇店加一倍,見(jiàn)花喝一斗,三遇店和花,喝光壺中酒。借問(wèn)此壺中,原有多少酒?”,如圖為該問(wèn)題的程序框圖,若輸出的值為0,則開(kāi)始輸入的值為(

          A. B.

          C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如果一個(gè)三位數(shù)的各位數(shù)字互不相同,且各數(shù)字之和等于10,則稱此三位數(shù)為“十全十美三位數(shù)”(如235),任取一個(gè)“十全十美三位數(shù)”,該數(shù)為奇數(shù)的概率為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來(lái)”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了200人進(jìn)行抽樣分析,得到如表(單位:人):

          經(jīng)常使用

          偶爾或不用

          合計(jì)

          30歲及以下

          70

          30

          100

          30歲以上

          60

          40

          100

          合計(jì)

          130

          70

          200

          (Ⅰ)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?

          (Ⅱ)①現(xiàn)從所抽取的30歲以上的網(wǎng)民中,按“經(jīng)常使用”與“偶爾或不用”這兩種類型進(jìn)行分層抽樣抽取10人,然后,再?gòu)倪@10人中隨機(jī)選出3人贈(zèng)送優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用共享單車的概率.

          ②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常使用共享單車的人數(shù)為,求的數(shù)學(xué)期望和方差.

          參考公式:,其中.

          參考數(shù)據(jù):

          0.15

          0.10

          0.05

          0.025

          0.010

          2.072

          2.706

          3.841

          5.024

          6.635

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)

          (1)若,且,求的最小值;

          (2)若,且上恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,曲線的極坐標(biāo)方程為.

          (1)求曲線的直角坐標(biāo)方程;

          (2)設(shè)曲線交于點(diǎn),曲線軸交于點(diǎn),求線段的中點(diǎn)到點(diǎn)的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下面四個(gè)命題中,其中正確命題的序號(hào)為____________.

          ① 函數(shù)是周期為的偶函數(shù);

          ② 若 是第一象限的角,且,則 ;

          是函數(shù)的一條對(duì)稱軸方程;

          ④ 在內(nèi)方程有3個(gè)解

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

          (1)求直線和圓的普通方程;

          (2)已知直線上一點(diǎn),若直線與圓交于不同兩點(diǎn),求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案