日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)若要使方程有且只有一個(gè)實(shí)根,則實(shí)數(shù)的取值范圍是    

           

          【答案】

          【解析】解:因?yàn)楹瘮?shù)若要使方程有且只有一個(gè)實(shí)根,則說(shuō)明圖像與x軸只有一個(gè)交點(diǎn),利用導(dǎo)函數(shù),分析極大值小于零時(shí)與x軸的位置可知參數(shù)a的范圍

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知等軸雙曲線C的兩個(gè)焦點(diǎn)F1、F2在直線y=x上,線段F1F2的中點(diǎn)是坐標(biāo)原點(diǎn),且雙曲線經(jīng)過(guò)點(diǎn)(3,
          3
          2
          ).
          (1)若已知下列所給的三個(gè)方程中有一個(gè)是等軸雙曲線C的方程:①x2-y2=
          27
          4
          ;②xy=9;③xy=
          9
          2
          .請(qǐng)確定哪個(gè)是等軸雙曲線C的方程,并求出此雙曲線的實(shí)軸長(zhǎng);
          (2)現(xiàn)要在等軸雙曲線C上選一處P建一座碼頭,向A(3,3)、B(9,6)兩地轉(zhuǎn)運(yùn)貨物.經(jīng)測(cè)算,從P到A、從P到B修建公路的費(fèi)用都是每單位長(zhǎng)度a萬(wàn)元,則碼頭應(yīng)建在何處,才能使修建兩條公路的總費(fèi)用最低?
          (3)如圖,函數(shù)y=
          3
          3
          x+
          1
          x
          的圖象也是雙曲線,請(qǐng)嘗試研究此雙曲線的性質(zhì),你能得到哪些結(jié)論?(本小題將按所得到的雙曲線性質(zhì)的數(shù)量和質(zhì)量酌情給分)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知定義在[-1,1]上的奇函數(shù)f(x),當(dāng)x∈(0,1]時(shí),f(x)=
          2x
          4x+1

          (Ⅰ)試用函數(shù)單調(diào)性定義證明:f(x)在(0,1]上是減函數(shù);
          (Ⅱ)若a>
          1
          3
          ,f(a)+f(1-3a)>0,求實(shí)數(shù)a的取值范圍;
          (Ⅲ)要使方程f(x)=x+b在[-1,1]上恒有實(shí)數(shù)解,求實(shí)數(shù)b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年上海市十校高三(下)聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          已知等軸雙曲線C的兩個(gè)焦點(diǎn)F1、F2在直線y=x上,線段F1F2的中點(diǎn)是坐標(biāo)原點(diǎn),且雙曲線經(jīng)過(guò)點(diǎn)(3,).
          (1)若已知下列所給的三個(gè)方程中有一個(gè)是等軸雙曲線C的方程:①x2-y2=;②xy=9;③xy=.請(qǐng)確定哪個(gè)是等軸雙曲線C的方程,并求出此雙曲線的實(shí)軸長(zhǎng);
          (2)現(xiàn)要在等軸雙曲線C上選一處P建一座碼頭,向A(3,3)、B(9,6)兩地轉(zhuǎn)運(yùn)貨物.經(jīng)測(cè)算,從P到A、從P到B修建公路的費(fèi)用都是每單位長(zhǎng)度a萬(wàn)元,則碼頭應(yīng)建在何處,才能使修建兩條公路的總費(fèi)用最低?
          (3)如圖,函數(shù)y=x+的圖象也是雙曲線,請(qǐng)嘗試研究此雙曲線的性質(zhì),你能得到哪些結(jié)論?(本小題將按所得到的雙曲線性質(zhì)的數(shù)量和質(zhì)量酌情給分)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三下學(xué)期模擬沖刺考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù),

          (Ⅰ)若函數(shù)和函數(shù)在區(qū)間上均為增函數(shù),求實(shí)數(shù)的取值范圍;

          (Ⅱ)若方程有唯一解,求實(shí)數(shù)的值.

          【解析】第一問(wèn),   

          當(dāng)0<x<2時(shí),,當(dāng)x>2時(shí),,

          要使在(a,a+1)上遞增,必須

          如使在(a,a+1)上遞增,必須,即

          由上得出,當(dāng)時(shí),上均為增函數(shù)

          (Ⅱ)中方程有唯一解有唯一解

          設(shè)  (x>0)

          隨x變化如下表

          x

          -

          +

          極小值

          由于在上,只有一個(gè)極小值,的最小值為-24-16ln2,

          當(dāng)m=-24-16ln2時(shí),方程有唯一解得到結(jié)論。

          (Ⅰ)解: 

          當(dāng)0<x<2時(shí),,當(dāng)x>2時(shí),,

          要使在(a,a+1)上遞增,必須

          如使在(a,a+1)上遞增,必須,即

          由上得出,當(dāng)時(shí),上均為增函數(shù)  ……………6分

          (Ⅱ)方程有唯一解有唯一解

          設(shè)  (x>0)

          隨x變化如下表

          x

          -

          +

          極小值

          由于在上,只有一個(gè)極小值,的最小值為-24-16ln2,

          當(dāng)m=-24-16ln2時(shí),方程有唯一解

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案