日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)的圖像過坐標(biāo)原點(diǎn),且在點(diǎn)處的切線的斜率是

          1)求實數(shù)的值;

          2)求在區(qū)間上的最大值;

          3)對任意給定的正實數(shù),曲線上是否存在兩點(diǎn),使得是以為直角頂點(diǎn)的直角三角形,且此三角形斜邊的中點(diǎn)在軸上?請說明理由.

           

          【答案】

          1;(2上的最大值為;(3)對任意給定的正實數(shù),曲線上總存在兩點(diǎn),使得是以為直角頂點(diǎn)的直角三角形,且此三角形斜邊的中點(diǎn)在y軸上.

          【解析】

          試題分析:1)求實數(shù)的值,由函數(shù),由圖像過坐標(biāo)原點(diǎn),得,且根據(jù)函數(shù)在點(diǎn)處的切線的斜率是,由導(dǎo)數(shù)幾何意義可得,建立方程組,可確定實數(shù)的值,進(jìn)而可確定函數(shù)的解析式;2)求在區(qū)間的最大值,因為,由于是分段函數(shù),可分段求最大值,最后確定最大值當(dāng)時,,求導(dǎo)得,,令,可得上的最大值為當(dāng)時,.對討論,確定函數(shù)的單調(diào)性,即可求得結(jié)論;3)這是探索性命題,可假設(shè)曲線上存在兩點(diǎn)滿足題設(shè)要求,則點(diǎn)只能在軸兩側(cè).設(shè)的坐標(biāo),由此入手能得到對任意給定的正實數(shù),曲線上存在兩點(diǎn)使得是以為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上.

          試題解析:1)當(dāng)時,1分)

          依題意,得,解得. (3分)

          2)由(1)知,

          ①當(dāng)4分)

          當(dāng)變化時的變化情況如下表:

          0

          0

          +

          0

          單調(diào)遞減

          極小值

          單調(diào)遞增

          極大值

          單調(diào)遞減

          所以上的最大值為. (6分)

          ②當(dāng)時,

          當(dāng)時, ,所以的最大值為0

          當(dāng)時,上單調(diào)遞增,所以上的最大值為.(7分)

          綜上所述,

          當(dāng),即時,上的最大值為2;

          當(dāng),即時,上的最大值為 . (9分)

          3)假設(shè)曲線上存在兩點(diǎn)滿足題設(shè)要求,則點(diǎn)只能在y軸的兩側(cè).

          不妨設(shè),則,顯然

          因為是以為直角頂點(diǎn)的直角三角形,

          所以,即

          若方程①有解,則存在滿足題意的兩點(diǎn);若方程①無解,則不存在滿足題意的兩點(diǎn)

          ,則,代入①式得

          ,而此方程無實數(shù)解,因此. (11分)

          此時,代入①式得,

          ,則,所以上單調(diào)遞增,因為,所以,當(dāng)時,,所以的取值范圍為。所以對于,方程②總有解,即方程①總有解.

          因此對任意給定的正實數(shù),曲線上總存在兩點(diǎn),使得是以為直角頂點(diǎn)的直角三角形,且此三角形斜邊的中點(diǎn)在y軸上. (14分)

          考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程;利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值.

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西師大附中,臨川一中高三期末聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù)的圖像過坐標(biāo)原點(diǎn),且在點(diǎn) 處的切線斜率為.

          1求實數(shù)的值;

          2 求函數(shù)在區(qū)間上的最小值;

          (Ⅲ)若函數(shù)的圖像上存在兩點(diǎn),使得對于任意給定的正實數(shù)都滿足是以為直角頂點(diǎn)的直角三角形,且三角形斜邊中點(diǎn)在軸上,求點(diǎn)的橫坐標(biāo)的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年甘肅省高三上學(xué)期第一次檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題

          (本題滿分為12分)

            已知函數(shù)的圖像過坐標(biāo)原點(diǎn),且在點(diǎn)處的切線

          的斜率是

          (1)求實數(shù)的值;    (2)求在區(qū)間上的最大值;

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013屆安徽省高二下學(xué)期期中質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù)的圖像過坐標(biāo)原點(diǎn),且在點(diǎn)處的切線的斜率是.

          (1)求實數(shù),的值

          (2)求在區(qū)間上的值域

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試(湖北卷)數(shù)學(xué)(理科) 題型:解答題

          已知函數(shù)的圖像過坐標(biāo)原點(diǎn),且在點(diǎn)處的切線的斜率是.

          (1)求實數(shù),的值

          (2)求在區(qū)間上的值域

           

          查看答案和解析>>

          同步練習(xí)冊答案