日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)y=f(x)=ax3+bx2+cx+d的圖象在x=0處的切線方程為24x+y-12=0.
          (Ⅰ)求c,d;
          (Ⅱ)若函數(shù)在x=2處取得極值-16,試求函數(shù)解析式并確定函數(shù)的單調(diào)區(qū)間.
          分析:(Ⅰ)對(duì)函數(shù)求導(dǎo)f'(x)=3ax2+2bx+c,由題意可得f'(0)=-24,f(0)=12,代入可求c,d
          (Ⅱ)由已知得:
          f(2)=16
          f′(2)=0
          ,代入可求a,b,然后代入到f'(x),由f'(x)>0得,由f'(x)<0可分別求函數(shù)f(x)的單調(diào)增區(qū)間,單調(diào)減區(qū)間
          解答:解:(Ⅰ)∵f'(x)=3ax2+2bx+c,
          ∴f'(0)=c;-----------------(1分)
          ∵切線24x+y-12=0的斜率為k=-24,∴c=-24;-----------------(2分)
          把x=0代入24x+y-12=0得y=12,∴P(0,12),-----------------(3分)
          ∴d=12.
          ∴c=-24,d=12.-----------------(4分)
          (Ⅱ)由(Ⅰ)f(x)=ax3+bx2-24x+12
          由已知得:
          f(2)=16
          f′(2)=0
          8a+4b-36=-16
          12a+4b-24=0

          a=1
          b=3
          -----------------(5分)
          ∴f(x)=x3+3x2-24x+12
          ∴f'(x)=3x2+6x-24=3(x2+2x-8)=3(x+4)(x-2)-----------------(6分)
          由f'(x)>0得,x<-4或x>2;
          由f'(x)<0得,-4<x<2;-----------------(7分)
          ∴f(x)的單調(diào)增區(qū)間為(-∞,-4),(2,+∞);
          單調(diào)減區(qū)間為(-4,2).-----------------(8分)
          點(diǎn)評(píng):本題主要考查了導(dǎo)數(shù)的幾何意義的應(yīng)用:由切線的斜率求解函數(shù)在一點(diǎn)處的導(dǎo)數(shù)值,導(dǎo)數(shù)在函數(shù)極值求解、單調(diào)區(qū)間的求解中的應(yīng)用,屬于函數(shù)的導(dǎo)數(shù)知識(shí)的綜合應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          13、設(shè)函數(shù)y=f(x)存在反函數(shù)y=f-1(x),且函數(shù)y=x-f(x)的圖象過點(diǎn)(1,2),則函數(shù)y=f-1(x)-x的圖象一定過點(diǎn)
          (-1,2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)y=f(x)是定義在R+上的函數(shù),并且滿足下面三個(gè)條件:①對(duì)任意正數(shù)x,y 都有f(xy)=f(x)+f(y);②當(dāng)x>1時(shí),f(x)<0;③f(3)=-1.
          (1)求f(1),f(
          19
          )的值;
          (2)證明:f(x)在R+上是減函數(shù);
          (3)如果不等式分f(x)+f(2-x)<2成立,求x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù)是y=f′(x),稱εyx=f′(x)•
          x
          y
          為函數(shù)f(x)的彈性函數(shù).
          函數(shù)f(x)=2e3x彈性函數(shù)為
          3x
          3x
          ;若函數(shù)f1(x)與f2(x)的彈性函數(shù)分別為εf 1xεf 2x,則y=f1(x)+f2(x)(f1(x)+f2(x)≠0)的彈性函數(shù)為
           f1(x)ef1x+f2(x)ef2x  
          f1(x)+f2(x)
           f1(x)ef1x+f2(x)ef2x  
          f1(x)+f2(x)

          (用εf 1x,εf 2x,f1(x)與f2(x)表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義,對(duì)于給定的正數(shù)K,定義函數(shù)fK(x)=
          f(x),f(x)≤k
          k,f(x)>k
          ,取函數(shù)f(x)=2-x-e-x,若對(duì)任意的x∈(-∞,+∞),恒有fK(x)=f(x),則K的最小值為
          1
          1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義.對(duì)于給定的正數(shù)K,定義函數(shù)fk(x)=
          f(x),f(x)≥K
          K,f(x)<K
          ,取函數(shù)f(x)=2+x+e-x.若對(duì)任意的x∈(+∞,-∞),恒有fk(x)=f(x),則(  )

          查看答案和解析>>

          同步練習(xí)冊答案