日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=lnx+
          a-xx
          ,其中a為大于零的常數(shù).
          (I)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線y=1-2x平行,求a的值;
          (II)求函數(shù)f(x)在區(qū)間[1,2]上的最小值.
          分析:(I)先由所給函數(shù)的表達(dá)式,求導(dǎo)數(shù)fˊ(x),再根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,最后由平行直線的斜率相等方程求a的值即可;
          (II)對(duì)參數(shù)a進(jìn)行分類,先研究f(x)在[1,2]上的單調(diào)性,利用導(dǎo)數(shù)求解f(x)在[1,2]上的最小值問(wèn)題即可,故只要先求出函數(shù)的極值,比較極值和端點(diǎn)處的函數(shù)值的大小,最后確定出最小值即得.
          解答:解:f′(x)=
          1
          x
          +
          -x-(a-x)
          x2
          =
          1
          x
          -
          a
          x2
          =
          x-a
          x2
          (x>0)(.4分)
          (I)因?yàn)榍y=f(x)在點(diǎn)(1,f(1))處的切線與直線y=1-2x平行,
          所以f'(1)=-2,即1-a=-2,解得a=3.(6分)
          (II)當(dāng)0<a≤1時(shí),f'(x)>0在(1,2)上恒成立,
          這時(shí)f(x)在[1,2]上為增函數(shù)∴f(x)min=f(1)=a-1.(8分)
          當(dāng)1<a<2時(shí),由f'(x)=0得,x=a∈(1,2)∵對(duì)于x∈(1,a)有f'(x)<0,f(x)在[1,a]上為減函數(shù),
          對(duì)于x∈(a,2)有f'(x)>0,f(x)在[a,2]上為增函數(shù),∴f(x)min=f(a)=lna.(11分)
          當(dāng)a≥2時(shí),f'(x)<0在(1,2)上恒成立,
          這時(shí)f(x)在[1,2]上為減函數(shù),∴f(x)min=f(2)=ln2+
          a
          2
          -1

          綜上,f(x)在[1,2]上的最小值為
          ①當(dāng)0<a≤1時(shí),f(x)min=a-1,
          ②當(dāng)1<a<2時(shí),f(x)min=lna,
          ③當(dāng)a≥2時(shí),f(x)min=ln2+
          a
          2
          -1
          (13分)
          點(diǎn)評(píng):本小題主要考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程、函數(shù)的最值及其幾何意義、兩條直線平行的判定等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查分類討論思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          1
          3
          x3-
          3
          2
          ax2-(a-3)x+b

          (1)若函數(shù)f(x)在P(0,f(0))的切線方程為y=5x+1,求實(shí)數(shù)a,b的值:
          (2)當(dāng)a<3時(shí),令g(x)=
          f′(x)
          x
          ,求y=g(x)在[l,2]上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          1
          2
          x2-alnx
          的圖象在點(diǎn)P(2,f(2))處的切線方程為l:y=x+b
          (1)求出函數(shù)y=f(x)的表達(dá)式和切線l的方程;
          (2)當(dāng)x∈[
          1
          e
          ,e]
          時(shí)(其中e=2.71828…),不等式f(x)<k恒成立,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=lnx,g(x)=
          12
          x2+a
          (a為常數(shù)),直線l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點(diǎn)的橫坐標(biāo)為1.
          (1)求直線l的方程及a的值;
          (2)當(dāng)k>0時(shí),試討論方程f(1+x2)-g(x)=k的解的個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          13
          x3+x2+ax

          (1)討論f(x)的單調(diào)性;
          (2)設(shè)f(x)有兩個(gè)極值點(diǎn)x1,x2,若過(guò)兩點(diǎn)(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點(diǎn)在曲線y=f(x)上,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=x3-
          32
          ax2+b
          ,a,b為實(shí)數(shù),x∈R,a∈R.
          (1)當(dāng)1<a<2時(shí),若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
          (2)在(1)的條件下,求經(jīng)過(guò)點(diǎn)P(2,1)且與曲線f(x)相切的直線l的方程;
          (3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點(diǎn)的個(gè)數(shù).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案