已知二次函數(shù)的圖象以原點(diǎn)為頂點(diǎn)且過點(diǎn)(1,1),反比例函數(shù)
的圖象與直線y=x的兩個交點(diǎn)間的距離為8,
.
(1)求函數(shù)f(x)的表達(dá)式;
(2)證明:當(dāng)a>3時,關(guān)于x的方程f(x)=f(a)有三個實(shí)數(shù)解.
(1) 由已知,設(shè)![]() ![]() ∴ ![]() 設(shè) ![]() ![]() ![]() 由 |AB|=8,得k=8,∴![]() ![]() (2) 證明:由f(x)=f(a),得![]() ![]() 在同一坐標(biāo)系內(nèi)作出 ![]() ![]() ![]() ![]() ![]() 因此 ![]() ![]() 又∵ ![]() ![]() 當(dāng) a>3時,![]() ∴當(dāng) a>3時,在第一象限![]() ![]() ∴ ![]() ![]() 因此,方程 f(x)=f(a)有三個實(shí)數(shù)解. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:044
已知二次函數(shù)
(1)
求函數(shù)f(x)的表達(dá)式;(2)
證明:當(dāng)a>3時,關(guān)于x的方程f(x)=f(a)有三個實(shí)數(shù)解.查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆江蘇省高三數(shù)學(xué)國慶作業(yè)二(文科) 題型:解答題
已知二次函數(shù)的圖象與x軸有兩個不同的公共點(diǎn),且
,當(dāng)
時,恒有
.
(1)當(dāng)時,求不等式
的解集;
(2)若以二次函數(shù)的圖象與坐標(biāo)軸的三個交點(diǎn)為頂點(diǎn)的三角形的面積為8,且,求a的值;
(3)若,且
對所有
恒成立,求正實(shí)數(shù)m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆北京市高一上學(xué)期期中考試數(shù)學(xué) 題型:解答題
設(shè)二次函數(shù)的圖象以
軸為對稱軸,已知
,而且若點(diǎn)
在
的圖象上,則點(diǎn)
在函數(shù)
的圖象上
(1)求的解析式
(2)設(shè),問是否存在實(shí)數(shù)
,使
在
內(nèi)是減函數(shù),在
內(nèi)是增函數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆新疆農(nóng)七師高級中學(xué)高一第二學(xué)期分班考試數(shù)學(xué) 題型:解答題
(本小題滿分12分)已知二次函數(shù)的圖象以原點(diǎn)為頂點(diǎn)且過點(diǎn)(1,1),反比例函數(shù)
的圖象與直線
的兩個交點(diǎn)間的距離為8,
(1)求函數(shù)的表達(dá)式;
(2)證明:當(dāng)時,關(guān)于
的方程
有三個實(shí)數(shù)解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com