日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=ax3+bx+c為R上的奇函數(shù),且當x=1時,有極小值-1;函
          (1)求函數(shù)f(x)的解析式;
          (2)若對于任意x∈[-2,2],恒有f(x)>g(x),求t的取值范圍.
          【答案】分析:(1)由f(-x)=-f(x)解出c,由f(1)=-1及f′(1)=0解出a和b,可得函數(shù)f(x)的解析式.
          (2)設,則h'(x)=3x2-3,由h′(x)的符號確定h(x)的單調(diào)性,從而確定h(x)的最小值,由題意知,任意x∈[-2,2],h(x)的最小值大于0,解此不等式,求出t的取值范圍.
          解答:解:(1)由f(-x)=-f(x)得:c=0,


          經(jīng)檢驗在x=1時,f(x)有極小值-1,

          (2)設,則h'(x)=3x2-3,
          令h'(x)=3x2-3>0得x>1或x<-1,
          令h'(x)=3x2-3<0得-1<x<1
          所以h(x)在區(qū)間[-2,-1]及[1,2]上的增函數(shù),在區(qū)間[-1,1]上的減函數(shù),

          使對于任意x∈[-2,2],恒有f(x)>g(x),則
          解得t<-3或0<t<1∴t∈(-∞,-3)∪(0,1)
          點評:本題考查用待定系數(shù)法求函數(shù)解析式,函數(shù)在某個點取極值的條件,以及函數(shù)的恒成立問題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=
          a-x2
          x
          +lnx  (a∈R , x∈[
          1
          2
           , 2])

          (1)當a∈[-2,
          1
          4
          )
          時,求f(x)的最大值;
          (2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
          34
          的解集為
          (-∞,-2)
          (-∞,-2)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
          2x
          )>3

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
          (1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
          (2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
          f(x)   ,  x>0
          -f(x) ,    x<0
           給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
           

          查看答案和解析>>

          同步練習冊答案