日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)

          (Ⅰ)討論函數(shù)的單調(diào)性;

          (Ⅱ)若時,關于的方程有唯一解,求的值

          【答案】()見解析 ()

          【解析】試題分析:(1)首先函數(shù)的定義域要求x>0,對函數(shù)求導,針k為奇數(shù)和偶數(shù)兩種情況考查導數(shù)的符號,借助導數(shù)的正負說明函數(shù)的增減性;(2)當k=2014時,寫出函數(shù)f(x)的表達式,使關于的方程有唯一解,只需有唯一根,構造函數(shù),對函數(shù)g(x)求導,令,得,研究函數(shù)個g(x)在 上的單調(diào)性和和g(x)的極小值,由于有唯一解,則要求則根據(jù)兩式的結(jié)構發(fā)現(xiàn)可構造函數(shù),由于 h(x)在上單增且,說明中的,從而解得 .

          試題解析:

          () 由已知得x>0且

          k是奇數(shù)時, ,則f(x)在(0,+ )上是增函數(shù);

          k是偶數(shù)時,則

          所以當x 時, ,當x 時,

          故當k是偶數(shù)時,f (x)在上是減函數(shù),在上是增函數(shù).

          () 若,則

          , ,

          若方程f(x)=2ax有唯一解,即g(x)=0有唯一解;

          ,得

          因為,所以(舍去),

          時, , 是單調(diào)遞減函數(shù);

          時, , 上是單調(diào)遞增函數(shù).

          x=x2時, , .因為有唯一解,所以

          設函數(shù)

          因為在x>0時,h (x)是增函數(shù),所以h (x) = 0至多有一解.

          因為h (1) = 0,所以方程(*)的解為x 2 = 1,從而解得

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】某市民用水擬實行階梯水價,每人用水量中不超過立方米的部分按4/立方米收費,超出立方米的部分按10/立方米收費,從該市隨機調(diào)查了10000位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如下頻率分布直方圖:

          1)如果為整數(shù),那么根據(jù)此次調(diào)查,為使80%以上居民在該月的用水價格為4/立方米, 至少定為多少?

          2)假設同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替,當時,估計該市居民該月的人均水費.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】一個幾何體的三視圖如圖所示(單位:m),則該幾何體的表面積為(單位:m2)(  )

          A. (11+4 B. (12+4 C. (13+4 D. (14+4

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】隨著經(jīng)濟的發(fā)展,某城市的市民收入逐年增長,表1是該城市某銀行連續(xù)五年的儲蓄存款額(年底余額):

          表1

          年份x

          2011

          2012

          2013

          2014

          2015

          儲蓄存款額y(千億元)

          5

          6

          7

          8

          10

          為了研究計算的方便,工作人員將表1的數(shù)據(jù)進行了處理,令tx-2 010,zy-5,得到表2:

          表2

          時間代號t

          1

          2

          3

          4

          5

          z

          0

          1

          2

          3

          5

          (1)z關于t的線性回歸方程是________;y關于x的線性回歸方程是________

          (2)用所求回歸方程預測到2020年年底,該銀行儲蓄存款額可達________千億元.

          (附:線性回歸方程x,其中)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在一次珠寶展覽會上,某商家展出一套珠寶首飾,第1件首飾是1顆珠寶,第2件首飾是由6顆珠寶構成的如圖1所示的正六邊形,第3件首飾是由15顆珠寶構成的如圖2所示的正六邊形,第4件首飾是由28顆珠寶構成的如圖3所示的正六邊形,第5件首飾是由45顆珠寶構成的如圖4所示的正六邊形,以后每件首飾都在前一件的基礎上,按照這種規(guī)律增加一定數(shù)量的珠寶,使它構成更大的正六邊形,依此推斷:

          (1)6件首飾上應有________顆珠寶;

          (2)n(nN*)件首飾所用珠寶總顆數(shù)為________.(結(jié)果用n表示)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】(本題分)

          如圖, 所在的平面互相垂直,且,

          )求證:

          )求直線與面所成角的大小的正弦值.

          )求二面角的大小的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】一個化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲種肥料的主要原料是磷酸鹽4噸,硝酸鹽18噸;生產(chǎn)1車皮乙種肥料需要的主要原料是磷酸鹽1噸,硝酸鹽15噸.現(xiàn)庫存磷酸鹽10噸,硝酸鹽66噸,在此基礎上生產(chǎn)這兩種混合肥料.如果生產(chǎn)1車皮甲種肥料產(chǎn)生的利潤為12 000元,生產(chǎn)1車皮乙種肥料產(chǎn)生的利潤為7 000元,那么可產(chǎn)生的最大利潤是(  )

          A. 29 000元 B. 31 000元 C. 38 000元 D. 45 000元

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】本小題滿分12己知函數(shù)fx=

          1求曲線y=fx在點0,f0))處的切線方程;

          2求證:當x0,1時,fx>2

          3設實數(shù)k使得fx>kx01恒成立,求k的最大值

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖1 ,在△ABC中,AB=BC=2, ∠B=90°,D為BC邊上一點,以邊AC為對角線做平行四邊形ADCE,沿AC將△ACE折起,使得平面ACE ⊥平面ABC,如圖2.

          (1)在圖 2中,設M為AC的中點,求證:BM丄AE;

          (2)在圖2中,當DE最小時,求二面角A -DE-C的平面角.

          查看答案和解析>>

          同步練習冊答案