日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1+x)n=1+a1x+a2x2+an-1xn-1+anxn中,若2a4=3an-6,則n的值為(。

          A7               B8               C9               D10

          答案:C
          提示:

          根據(jù)二項(xiàng)式公式求出a4, an-6


          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

          請(qǐng)先閱讀:
          設(shè)可導(dǎo)函數(shù) f(x) 滿足f(-x)=-f(x)(x∈R).
          在等式f(-x)=-f(x) 的兩邊對(duì)x求導(dǎo),
          得(f(-x))′=(-f(x))′,
          由求導(dǎo)法則,得f′(-x)•(-1)=-f′(x),
          化簡得等式f′(-x)=f′(x).
          (Ⅰ)利用上述想法(或其他方法),結(jié)合等式(1+x)n=
          C
          0
          n
          +
          C
          1
          n
          x+
          C
          2
          n
          x2+…+
          C
          n
          n
          xn
          (x∈R,整數(shù)n≥2),證明:n[(1+x)n-1-1]=2
          C
          2
          n
          x+3
          C
          3
          n
          x2+4
          C
          4
          n
          x3+…+n
          C
          n
          n
          xn-1
          ;
          (Ⅱ)當(dāng)整數(shù)n≥3時(shí),求
          C
          1
          n
          -2
          C
          2
          n
          +3
          C
          3
          n
          -…+(-1)n-1n
          C
          n
          n
          的值;
          (Ⅲ)當(dāng)整數(shù)n≥3時(shí),證明:2
          C
          2
          n
          -3•2
          C
          3
          n
          +4•3
          C
          4
          n
          +…+(-1)n-2n(n-1)
          C
          n
          n
          =0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013

          (1+x)n=1+a1x+a2x2+an-1xn-1+anxn中,若2a4=3an-6,則n的值為(。

          A7               B8               C9               D10

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          請(qǐng)先閱讀:
          設(shè)可導(dǎo)函數(shù) f(x) 滿足f(-x)=-f(x)(x∈R).
          在等式f(-x)=-f(x) 的兩邊對(duì)x求導(dǎo),
          得(f(-x))′=(-f(x))′,
          由求導(dǎo)法則,得f′(-x)•(-1)=-f′(x),
          化簡得等式f′(-x)=f′(x).
          (Ⅰ)利用上述想法(或其他方法),結(jié)合等式(1+x)n=
          C0n
          +
          C1n
          x+
          C2n
          x2+…+
          Cnn
          xn
          (x∈R,整數(shù)n≥2),證明:n[(1+x)n-1-1]=2
          C2n
          x+3
          C3n
          x2+4
          C4n
          x3+…+n
          Cnn
          xn-1

          (Ⅱ)當(dāng)整數(shù)n≥3時(shí),求
          C1n
          -2
          C2n
          +3
          C3n
          -…+(-1)n-1n
          Cnn
          的值;
          (Ⅲ)當(dāng)整數(shù)n≥3時(shí),證明:2
          C2n
          -3•2
          C3n
          +4•3
          C4n
          +…+(-1)n-2n(n-1)
          Cnn
          =0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)在(-1,1)上有定義f()=1,對(duì)于x,y∈(-1,1)有f(x)-f(y)=f()恒成立,對(duì)數(shù)列{xn}有x1=,xn+1=(n∈N*).

          (1)證明:f(x)在(-1,1)上為奇函數(shù);

          (2)求f(xn)的表達(dá)式;

          (3)是否存在自然數(shù)m,使得對(duì)于任意n∈N*,恒成立?若存在,求出m的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案