日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在直三棱柱ABC-A1B1C1中,底面ABC是等腰直角三角形,且AC=BC=
          2
          ,側(cè)棱CC1=
          3
          ,點(diǎn)D是A1B1的中點(diǎn),則異面直線B1C與AD所成的角的余弦值是
          2
          5
          5
          2
          5
          5
          分析:取AB的中點(diǎn)為E,連接EB1,EC,根據(jù)題意可得:AD∥B1E,所以異面直線B1C與AD所成的角等于直線B1E與直線B1C所成的角相等,即∠CB1E為所求,再利用解三角形的有關(guān)知識求出兩條異面直線夾角的余弦值.
          解答:解:取AB的中點(diǎn)為E,連接EB1,EC,
          因?yàn)辄c(diǎn)D、E分別是A1B1,AB的中點(diǎn),
          所以AD∥B1E,
          所以異面直線B1C與AD所成的角等于直線B1E與直線B1C所成的角相等,即∠CB1E為所求.
          因?yàn)榈酌鍭BC是等腰直角三角形,且AC=BC=
          2
          ,
          所以EC=1,并且BE=1,
          又因?yàn)閭?cè)棱CC1=
          3

          所以B1E=2,并且B1C=
          5

          所以在△AB1C中由勾股定理可得:∠B1EC=90°,
          所以cos∠CB1E=
          EB1
          CB1
          =
          2
          5
          =
          2
          5
          5

          故答案為:
          2
          5
          5
          點(diǎn)評:本題主要考查空間中異面直線的夾角,求解空間角的一般步驟是:找角,證角,求角三步,解決此類問題的關(guān)鍵是熟練掌握空間幾何體的結(jié)構(gòu)特征.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值; 

          (Ⅲ)求點(diǎn)C到平面B1DP的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年四川省招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題

           

           (本小題共l2分)

              如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

          P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值;   

          (Ⅲ)求點(diǎn)C到平面B1DP的距離.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)理(四川卷)解析版 題型:解答題

           (本小題共l2分)

              如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

          P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值;   

          (Ⅲ)求點(diǎn)C到平面B1DP的距離.

           

           

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:四川省高考真題 題型:解答題

          如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點(diǎn),P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA。
          (I)求證:CD=C1D;
          (II)求二面角A-A1D-B的平面角的余弦值;
          (Ⅲ)求點(diǎn)C到平面B1DP的距離

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

              如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點(diǎn),P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值;

          (Ⅲ)求點(diǎn)C到平面B1DP的距離.

          查看答案和解析>>

          同步練習(xí)冊答案