日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=
          x2+1
          -ax(a>0)
          ,
          (I)求證:當(dāng)且僅當(dāng)a≥1時,f(x)在[0,+∞)內(nèi)為單調(diào)函數(shù);
          (II)求a的取值范圍,使函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù).
          分析:(I)先求函數(shù)f(x)=
          x2+1
          -ax(a>0)
          的導(dǎo)數(shù)f′(x),再證明a≥1時,f′(x)<0,f(x)單調(diào);而a<1時,f′(x)先負后正,f(x)不單調(diào)
          (II)由(1)知a≥1時f(x)單調(diào)遞減,不合題意,當(dāng)0<a<1時,使函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù),需[1,+∞)是函數(shù)單調(diào)增區(qū)間的子區(qū)間,可求a的范圍
          解答:解:(I)∵f′(x)=
          x
          x2+1
          -a
          ,
          ①當(dāng)a≥1時,∵
          x
          x2+1
          |x|
          x2+1
          <1≤a
          ,∴f(x)在[0,+∞)上單調(diào)遞減
          ②當(dāng)0<a<1時,由f′(x)<0,得0≤x<a
          x2+1
          ⇒0≤x<
          a
          1-a2

          由f′(x)>0得x>a
          x2+1
          ⇒x>
          a
          1-a2
          ;
          ∴當(dāng)0<a<1時,f(x)在[0,
          a
          1-a2
          )為減函數(shù),而在(
          a
          1-a2
          ,+∞)
          ,為增函數(shù),
          ∴當(dāng)0<a<1時,f(x)在[0,+∞)上不是單調(diào)函數(shù);
          綜上,當(dāng)且僅當(dāng)a≥1時,f(x)在[0,+∞)上為單調(diào)函數(shù).
          (II)由(I)①知當(dāng)a≥1時f(x)單調(diào)遞減,不合;  由②知當(dāng)f(x)在[1,+∞)上單調(diào)遞增等價于:
          a
          1-a2
          ≤1
          ,∴0<a≤
          2
          2
          ,即a的取值范圍是(0,
          2
          2
          ]
          點評:本題考查了導(dǎo)數(shù)在函數(shù)的單調(diào)性上的應(yīng)用,解題時要學(xué)會對參數(shù)進行討論,做到不重不漏,還要注意一題中兩問間的關(guān)系
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          當(dāng)p1,p2,…,pn均為正數(shù)時,稱
          n
          p1+p2+…+pn
          為p1,p2,…,pn的“均倒數(shù)”.已知數(shù)列{an}的各項均為正數(shù),且其前n項的“均倒數(shù)”為
          1
          2n+1

          (1)求數(shù)列{an}的通項公式;
          (2)設(shè)cn=
          an
          2n+1
          (n∈N*),試比較cn+1與cn的大。
          (3)設(shè)函數(shù)f(x)=-x2+4x-
          an
          2n+1
          ,是否存在最大的實數(shù)λ,使當(dāng)x≤λ時,對于一切正整數(shù)n,都有f(x)≤0恒成立?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=
          x2+bx+c,(x<0)
          -x+3,(x≥0)
          ,且f(-4)=f(0),f(-2)=-1.
          (1)求函數(shù)f(x)的解析式; 
          (2)畫出函數(shù)f(x)的圖象,并指出函數(shù)f(x)的單調(diào)區(qū)間.
          (3)若方程f(x)=k有兩個不等的實數(shù)根,求k的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知△ABC中,角A,B,C所對邊長分別是a,b,c,設(shè)函數(shù)f(x)=x2+bx-
          1
          4
          為偶函數(shù),且f(cos
          B
          2
          )=0

          (1)求角B的大小;
          (2)若△ABC的面積為
          3
          4
          ,其外接圓的半徑為
          2
          3
          3
          ,求△ABC的周長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=
          x2+bx+c,-4≤x<0
          -x+3,0≤x≤4
          ,且f(-4)=f(0),f(-2)=-1.
          (1)求函數(shù)f(x)的解析式;
          (2)畫出函數(shù)f(x)的圖象,并寫出函數(shù)f(x)的定義域、值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=
          x2-x+n
          x2+x+1
          (x∈R,x≠
          n-1
          2
          ,x∈N*)
          ,f(x)的最小值為an,最大值為bn,記cn=(1-an)(1-bn
          則數(shù)列{cn}是
          常數(shù)
          常數(shù)
          數(shù)列.(填等比、等差、常數(shù)或其他沒有規(guī)律)

          查看答案和解析>>

          同步練習(xí)冊答案