日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知四棱錐P—ABCD的三視圖如圖,E是側(cè)棱PC上的動(dòng)點(diǎn).

          (1)求四棱錐P—ABCD的體積;

          (2)若點(diǎn)F在線段BD上且DF=3BF,則當(dāng)等于多少時(shí),有EF∥平面PAB?并證明你的結(jié)論;

          (3)試證明P、A、B、C、D五個(gè)點(diǎn)在同一球面上.

          解:(1)由該四棱錐的三視圖可知,該四棱錐P—ABCD的底面是邊長為1的正方形,

          側(cè)棱PC⊥底面ABCD,且PC=2.

          ∴VPABCD=S正方形ABCD·PC=.

          (2)當(dāng)=時(shí),有EF∥平面PAB.

          連結(jié)CF延長交AB于G,連結(jié)PG,在正方形ABCD中,DF=3BF.

          由△BFG∽△DFC得.

          在△PCG中,,

          ∴EF∥PG.又PG平面PAB,EF平面PAB,

          ∴EF∥平面PAB.

          (3)證明:取PA的中點(diǎn)O.連結(jié)OB、OC、OD,

          連結(jié)AC,

          在四棱錐P—ABCD中,側(cè)棱PC⊥平面ABCD,

          底面ABCD為正方形,

          可知△PCA、△PBA、△PDA均是直角三角形,

          又O為PA中點(diǎn),∴OA=OP=OB=OC=OD.

          ∴點(diǎn)P、A、B、C、D在以點(diǎn)O為球心的球面上.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點(diǎn),F(xiàn)為AD的中點(diǎn).
          (Ⅰ)證明EF∥平面PAB;
          (Ⅱ)證明EF⊥平面PBC;
          (III)點(diǎn)M是四邊形ABCD內(nèi)的一動(dòng)點(diǎn),PM與平面ABCD所成的角始終為45°,求動(dòng)直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,側(cè)面PBC⊥底面ABCD,O是BC的中點(diǎn).
          (1)求證:PO⊥平面ABCD;
          (2)求證:PA⊥BD
          (3)若二面角D-PA-O的余弦值為
          10
          5
          ,求PB的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E為BC中點(diǎn),AE與BD交于O點(diǎn),AB=BC=2CD=2,BD⊥PE.
          (1)求證:平面PAE⊥平面ABCD; 
          (2)若直線PA與平面ABCD所成角的正切值為
          5
          2
          ,PO=2,求四棱錐P-ABCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是線段PC上一點(diǎn),PC⊥平面BDE.
          (Ⅰ)求證:BD⊥平面PAB.
          (Ⅱ)若PA=4,AB=2,BC=1,求直線AC與平面PCD所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省濟(jì)寧一中高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點(diǎn),F(xiàn)為AD的中點(diǎn).
          (Ⅰ)證明EF∥平面PAB;
          (Ⅱ)證明EF⊥平面PBC;
          (III)點(diǎn)M是四邊形ABCD內(nèi)的一動(dòng)點(diǎn),PM與平面ABCD所成的角始終為45°,求動(dòng)直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案