日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 18、已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0),函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線與x軸平行.
          (1)用關(guān)于m的代數(shù)式表示n.
          (2)求函數(shù)f(x)的單調(diào)增區(qū)間.
          分析:(1)先對函數(shù)f(x)進(jìn)行求導(dǎo),又根據(jù)f'(2)=0可得到關(guān)于m的代數(shù)式.
          (2)將(1)中m的代數(shù)式n代入函數(shù)f(x)中消去n,可得f'(x)=3mx2-6mx,當(dāng)f'(x)>0時x的取值區(qū)間為所求.
          解答:解:(Ⅰ)由已知條件得f'(x)=3mx2+2nx,
          又f'(2)=0,∴3m+n=0,故n=-3m.
          (Ⅱ)∵n=-3m,∴f(x)=mx3-3mx2,∴f'(x)=3mx2-6mx.
          令f'(x)>0,即3mx2-6mx>0,
          當(dāng)m>0時,解得x<0或x>2,則函數(shù)f(x)的單調(diào)增區(qū)間是(-∞,0)和(2,+∞);
          當(dāng)m<0時,解得0<x<2,則函數(shù)f(x)的單調(diào)增區(qū)間是(0,2).
          綜上,當(dāng)m>0時,函數(shù)f(x)的單調(diào)增區(qū)間是(-∞,0)和(2,+∞);
          當(dāng)m<0時,函數(shù)f(x)的單調(diào)增區(qū)間是(0,2).
          點(diǎn)評:本題主要考查通過求函數(shù)的導(dǎo)數(shù)來求函數(shù)增減區(qū)間的問題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=m•2x+t的圖象經(jīng)過點(diǎn)A(1,1)、B(2,3)及C(n,Sn),Sn為數(shù)列{an}的前n項(xiàng)和,n∈N*
          (1)求Sn及an;
          (2)若數(shù)列{cn}滿足cn=6nan-n,求數(shù)列{cn}的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=m(x+
          1
          x
          )的圖象與h(x)=(x+
          1
          x
          )+2的圖象關(guān)于點(diǎn)A(0,1)對稱.
          (1)求m的值;
          (2)若g(x)=f(x)+
          a
          4x
          在(0,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          m
          n
          ,其中
          m
          =(sinωx+cosωx,
          3
          cosωx)
          ,
          n
          =(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相鄰兩對稱軸間的距離不小于
          π
          2

          (Ⅰ)求ω的取值范圍;
          (Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,a=
          3
          ,b+c=3,當(dāng)ω最大時,f(A)=1,求△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          以下兩題任選一題:(若兩題都作,按第一題評分)
          (一):在極坐標(biāo)系中,圓ρ=2cosθ的圓心到直線θ=
          π
          3
          (ρ∈R)的距離
          3
          2
          3
          2
          ;
          (二):已知函數(shù)f(x)=m-|x-2|,m∈R,當(dāng)不等式f(x+2)≥0的解集為[-2,2]時,實(shí)數(shù)m的值為
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集為[-1,1].
          (1)求m的值;
          (2)若a,b,c∈R+,且
          1
          a
          +
          1
          2b
          +
          1
          3c
          =m,求Z=a+2b+3c的最小值.

          查看答案和解析>>

          同步練習(xí)冊答案