日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)學(xué)公式
          (1)用單調(diào)性定義證明:f(x)在區(qū)間(0,+∞)上是增函數(shù).
          (2)函數(shù)y=f(x)在區(qū)間[1,3]上的值域為A,求函數(shù)y=4x-2x+1(x∈A)的最大值和最小值.

          (1)證明:設(shè)x1,x2∈(0,+∞),且x1<x2,
          ,
          ∵0<x1<x2,∴x1-x2<0,x1x2>0,∴,
          ∴f(x1)-f(x2)<0,即f(x1)<f(x2
          ∴y=f(x)在(0,+∞)上是增函數(shù).
          (2)解:由(1)y=f(x)在[1,3]上是增函數(shù),則在區(qū)間[1,3]上
          當(dāng)x=1時,y=f(x)有最小值-3,當(dāng)x=3時,y=f(x)有最大值1,故A=[-3,1].
          y=4x-2x+1=(2x2-2•2x
          令t=2x,由A=[-3,1],得,
          ,
          當(dāng)t=1,即x=0時,y有最小值-1;
          當(dāng)t=2,即x=1時,y有最大值0.
          分析:(1)利用定義證明單調(diào)性步驟為:①取值;②作差;③變形;④判號;⑤結(jié)論.
          (2)利用f(x)的單調(diào)性求出A,y=4x-2x+1=(2x2-2•2x,令t=2x,則y=t2-2t,利用二次函數(shù)性質(zhì)可求其最值.
          點評:定義法是證明函數(shù)單調(diào)性的一種基本方法,要熟練掌握其步驟,其中變形最關(guān)鍵,對二次函數(shù)的最值問題最好借助圖象處理.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:2014屆云南省高一上學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

          (本小題滿分12分)已知函數(shù)是定義在上的奇函數(shù),且,

          (1)確定函數(shù)的解析式;

          (2)用定義證明上是增函數(shù);

          (3)解不等式.

          【解析】第一問利用函數(shù)的奇函數(shù)性質(zhì)可知f(0)=0

          結(jié)合條件,解得函數(shù)解析式

          第二問中,利用函數(shù)單調(diào)性的定義,作差變形,定號,證明。

          第三問中,結(jié)合第二問中的單調(diào)性,可知要是原式有意義的利用變量大,則函數(shù)值大的關(guān)系得到結(jié)論。

           

          查看答案和解析>>

          同步練習(xí)冊答案