【題目】已知甲盒內(nèi)有大小相同的個(gè)紅球和
個(gè)黑球,乙盒內(nèi)有大小相同的
個(gè)紅球和
個(gè)黑球.現(xiàn)從甲、乙兩個(gè)盒內(nèi)各任取
個(gè)球.
(1)求取出的個(gè)球中恰有
個(gè)紅球的概率;
(2)設(shè)為取出的
個(gè)球中紅球的個(gè)數(shù),求
的分布列和數(shù)學(xué)期望.
【答案】(1);(2)見(jiàn)解析.
【解析】
(1)取出的個(gè)球中恰有
個(gè)紅球包含從甲盒拿出
個(gè)紅球和從乙盒中拿出
個(gè)紅球,然后利用古典概型的概率公式和互斥事件的概率加法公式可求出所求事件的概率;
(2)由題意知隨機(jī)變量的可能取值為
、
、
、
,然后利用超幾何分布概率公式計(jì)算出相應(yīng)的概率,可寫(xiě)出隨機(jī)變量
的分布列,并求出隨機(jī)變量
的數(shù)學(xué)期望.
(1)記事件取出的
個(gè)球中恰有
個(gè)紅球,事件
取出的
個(gè)球中唯一的紅球取自于甲盒,事件
取出的
個(gè)球中唯一的紅球取自于乙盒,
則,且事件
與
互斥,
由互斥事件的概率公式可得,
因此,取出的個(gè)球中恰有
個(gè)紅球的概率為
;
(2)由題意知隨機(jī)變量的可能取值為
、
、
、
,
,
,
,
.
所以,隨機(jī)變量的分布列如下表所示:
因此,隨機(jī)變量的數(shù)學(xué)期望為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲乙兩班各隨機(jī)抽取10名同學(xué),如圖所示的莖葉圖記錄了這20名同學(xué)在2018年高考語(yǔ)文作文題目中的成績(jī)(單位:分).已知語(yǔ)文作文題目滿(mǎn)分為60分,“分?jǐn)?shù)分,為及格:分?jǐn)?shù)
分,為高分”,若甲乙兩班的成績(jī)的平均分都是44分.
(1)求,
的值;
(2)若分別從甲乙兩班隨機(jī)各抽取1名成績(jī)?yōu)楦叻值膶W(xué)生,求抽到的學(xué)生中,甲班學(xué)生成績(jī)高于乙班學(xué)生成績(jī)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)的圖象向右平移
個(gè)單位,在向上平移一個(gè)單位,得到g(x)的圖象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],則x1﹣2x2的最大值為( 。
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在區(qū)間
上存在兩個(gè)不同零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)是橢圓
上的任意一點(diǎn),直線(xiàn)
與橢圓交于
,
兩點(diǎn),直線(xiàn)
,
的斜率都存在.
(1)若直線(xiàn)過(guò)原點(diǎn),求證:
為定值;
(2)若直線(xiàn)不過(guò)原點(diǎn),且
,試探究
是否為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一種室內(nèi)植物的株高(單位:
)與與一定范圍內(nèi)的溫度
(單位:
)有,現(xiàn)收集了該種植物的
組觀(guān)測(cè)數(shù)據(jù),得到如圖所示的散點(diǎn)圖:
現(xiàn)根據(jù)散點(diǎn)圖利用或
建立
關(guān)于
的回歸方程,令
,
,得到如下數(shù)據(jù):
且與
的相關(guān)系數(shù)分別為
、
,其中
.
(1)用相關(guān)系數(shù)說(shuō)明哪種模型建立關(guān)于
的回歸方程更合適;
(2)(i)根據(jù)(1)的結(jié)果及表中數(shù)據(jù),求關(guān)于
的回歸方程;
(ii)已知這種植物的利潤(rùn)(單位:千元)與
、
的關(guān)系為
,當(dāng)
何值時(shí),利潤(rùn)的預(yù)報(bào)值最大.
附:對(duì)于樣本,其回歸直線(xiàn)
的斜率和截距的最小二乘估計(jì)公式分別為:
,
,
相關(guān)系數(shù),
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,傾斜角為
的直線(xiàn)
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)
的極坐標(biāo)方程為
.
(Ⅰ)求直線(xiàn)的普通方程和曲線(xiàn)
的直角坐標(biāo)方程;
(Ⅱ)已知點(diǎn),若點(diǎn)
的極坐標(biāo)為
,直線(xiàn)
經(jīng)過(guò)點(diǎn)
且與曲線(xiàn)
相交于
兩點(diǎn),設(shè)線(xiàn)段
的中點(diǎn)為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題對(duì)任意實(shí)數(shù)
,不等式
恒成立;命題
方程
表示焦點(diǎn)在
軸上的雙曲線(xiàn).
(1)若命題為真命題,求實(shí)數(shù)
的取值范圍;
(2)若命題:“”為真命題,且“
”為假命題,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com