日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=(x-a)2lnx,a∈R,若x=e為y=f(x)的極大值點(diǎn),則實(shí)數(shù)a的值等于
          3e
          3e
          分析:根據(jù)x=e為函數(shù)y=f(x)的極大值點(diǎn),得到方程(x-a)(2lnx+1-
          a
          x
          )的根為e,根據(jù)根的定義,求出a值,最后根據(jù)極值的情況驗(yàn)證結(jié)果.
          解答:解:(1)求導(dǎo)得f'(x)=2(x-a)lnx+
          (x-a)2
          x
          =(x-a)(2ln x+1-
          a
          x

          因?yàn)閤=e是f(x)的極值點(diǎn),所以f'(e)=(e-a)(3-
          a
          e
          )=0,
          解得a=e或a=3e,
          當(dāng)a=e時(shí)f(x)=(x-e)2lnx,f′(x)=(x-e)(2lnx+1-
          e
          x

          當(dāng)x>e時(shí),x-e>0,2lnx+1-
          e
          x
          >0,即f′(x)>0,f(x)為增函數(shù),
          ∴x=e為極小值點(diǎn),故a≠e,
          經(jīng)檢驗(yàn),a=3e,符合題意.
          故答案為3e;
          點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的性,利用導(dǎo)數(shù)求極值和極值存在的條件,是一道基礎(chǔ)題;
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
          (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時(shí),f(x)=x3-4x+3.有下列命題:
          f(-
          3
          4
          ) <f(
          15
          2
          )
          ;
          ②當(dāng)x∈[-1,0]時(shí)f(x)=x3+4x+3;
          ③f(x)(x≥0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)由小到大構(gòu)成一個(gè)無(wú)窮等差數(shù)列;
          ④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個(gè)不同的根.
          其中真命題的個(gè)數(shù)為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
          (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省蘇、錫、常、鎮(zhèn)四市高三調(diào)研數(shù)學(xué)試卷(一)(解析版) 題型:解答題

          設(shè)函數(shù)f(x)=x(x-1)2,x>0.
          (1)求f(x)的極值;
          (2)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
          (3)設(shè)函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實(shí)數(shù)m有且只有一個(gè),求實(shí)數(shù)m和t的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省蘇州市高考數(shù)學(xué)一模試卷(解析版) 題型:解答題

          設(shè)函數(shù)f(x)=x(x-1)2,x>0.
          (1)求f(x)的極值;
          (2)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
          (3)設(shè)函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實(shí)數(shù)m有且只有一個(gè),求實(shí)數(shù)m和t的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案