日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 有關(guān)命題的說(shuō)法有下列命題:①若p∧q為假命題,則p、q均為假命題
          ②“x=1”是“x2-3x+2=0”的充分不必要條件
          ③命題“若x2-3x+2=0則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”
          ④對(duì)于命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1≥0
          其中所有正確結(jié)論的序號(hào)是   
          【答案】分析:根據(jù)p∧q的真假與p,q真假的關(guān)系“全真則真,有假則假”判斷出①為假命題;
          判斷出“x=1”成立,能推出“x2-3x+2=0”成立;反之,若“x2-3x+2=0”成立推不出x=1成立,利用充要條件的有關(guān)定義判斷出②為真命題;
          根據(jù)逆否命題的形式判斷出③為真命題;
          根據(jù)含量詞的命題的否定形式判斷出④為真命題;
          解答:解:對(duì)于①,根據(jù)p∧q的真假與p,q真假的關(guān)系“全真則真,有假則假”得到若p∧q為假命題,則p、q至少一個(gè)為假命題,所以①為假命題;
          對(duì)于②,若“x=1”成立,有“x2-3x+2=0”成立;反之,若“x2-3x+2=0”成立有x=1或x=2成立,
          所以“x=1”是“x2-3x+2=0”的充分不必要條件,故②為真命題;
          對(duì)于③,命題“若x2-3x+2=0則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”,所以③為真命題;
          對(duì)于④,命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1≥0,所以④為真命題;
          故答案為②③④
          點(diǎn)評(píng):本題考查復(fù)合命題的真假與構(gòu)成其簡(jiǎn)單命題的真假的關(guān)系、注意含量詞的命題的否定形式:將量詞交換,結(jié)論否定即可,屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          7、下列有關(guān)命題的說(shuō)法錯(cuò)誤的是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          下列有關(guān)命題的說(shuō)法正確的是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          下列有關(guān)命題的說(shuō)法:
          ①命題“若x=y,則sinx=siny”的逆否命題為真命題;
          ②“a=3”是“直線ax+2y+3a=0與直線3x+(a-1)y=a-7相互垂直”的充要條件;
          ③已知命題p:對(duì)任意的x∈R,ax2+2x+1≥0.若命題p是假命題,則實(shí)數(shù)a的取值范圍是[0,1);
          ④“k=1”是“函數(shù)y=cos2kx-sin2kx的最小正周期為π”的充分不必要條件.
          其中正確的有
          ①④
          ①④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          有關(guān)命題的說(shuō)法有下列命題:①若p∧q為假命題,則p、q均為假命題
          ②“x=1”是“x2-3x+2=0”的充分不必要條件
          ③命題“若x2-3x+2=0則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”
          ④對(duì)于命題p:?x∈R,使得x2+x+1<0,則?p:?x∈R,均有x2+x+1≥0
          其中所有正確結(jié)論的序號(hào)是
          ②,③,④
          ②,③,④

          查看答案和解析>>

          同步練習(xí)冊(cè)答案