日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長為半徑的圓相切.

           (Ⅰ)求橢圓的方程;

           (Ⅱ)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過點(diǎn)且垂直于橢圓的長軸,動(dòng)直線垂直于點(diǎn),

          線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;

           (Ⅲ)設(shè)軸交于點(diǎn),不同的兩點(diǎn)上,且滿足,求的取值范圍.

           

          【答案】

          (Ⅰ)(Ⅱ)(Ⅲ)

          【解析】

          試題分析:(Ⅰ)利用離心率和直線與圓相切得到兩個(gè)等量關(guān)系,確定橢圓方程;(Ⅱ)利用定義法求解曲線方程;(Ⅲ)采用坐標(biāo)法,將向量問題坐標(biāo)化,進(jìn)行有效的整理為,然后借助均值不等式進(jìn)行求解范圍.

          試題解析:(Ⅰ)∵  

          ∵直線相切,

             ∴        3分

          ∵橢圓的方程是           6分

          (Ⅱ)∵

          ∴動(dòng)點(diǎn)到定直線的距離等于它到定點(diǎn)的距離,

          ∴動(dòng)點(diǎn)的軌跡是準(zhǔn)線,為焦點(diǎn)的拋物線        6分

          ∴點(diǎn)的軌跡的方程為      9分

          (Ⅲ),設(shè) 

           

          ,∴

          ,化簡得          11分

          當(dāng)且僅當(dāng)時(shí)等號(hào)成立       13分

          ,又

          ∴當(dāng)時(shí),,故的取值范圍是  14分

          考點(diǎn):1.橢圓方程;2.拋物線的定義;3.坐標(biāo)法的應(yīng)用.

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知橢圓E的離心率為e,兩焦點(diǎn)為F1,F(xiàn)2,拋物線C以F1為頂點(diǎn),F(xiàn)2為焦點(diǎn),P為兩曲線的一個(gè)公共點(diǎn),若
          |PF1|
          |PF2|
          =e,則e的值為( 。
          A、
          3
          3
          B、
          3
          2
          C、
          2
          2
          D、
          6
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,動(dòng)點(diǎn)M為右準(zhǔn)線上一點(diǎn)(異于右準(zhǔn)線與x軸的交點(diǎn)),設(shè)線段FM交橢圓C于點(diǎn)P,已知橢圓C的離心率為
          2
          3
          ,點(diǎn)M的橫坐標(biāo)為
          9
          2

          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)設(shè)直線PA的斜率為k1,直線MA的斜率為k2,求k1•k2的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓E的離心率為e,兩焦點(diǎn)為F1、F2,拋物線C以F1為頂點(diǎn),F(xiàn)2為焦點(diǎn),P為兩曲線的一個(gè)交點(diǎn),若
          |PF1|
          |PF2|
          =e,則e的值為
          3
          3
          3
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C的離心率為e=
          6
          3
          ,一條準(zhǔn)線方程為x=
          3
          2
          2

          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)設(shè)動(dòng)點(diǎn)P滿足:
          OP
          =
          OM
          +
          ON
          ,其中M,N是橢圓上的點(diǎn),直線OM與ON的斜率之積為-
          1
          3
          ,問:是否存在兩個(gè)定點(diǎn)A,B,使得|PA|+|PB|為定值?若存在,求A,B的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (A題) (奧賽班做)已知橢圓E的離心率為e,左右焦點(diǎn)分別為F1、F2,拋物線C以F1頂點(diǎn),F(xiàn)2為焦點(diǎn),P為兩曲線的一個(gè)交點(diǎn),
          |PF1|
          |PF2|
          =e
          ,則e的值為
          3
          3
          3
          3

          查看答案和解析>>

          同步練習(xí)冊(cè)答案