(本小題滿分13分)
已知數(shù)列滿足:
,
(I) 求得值;
(II) 設求證:數(shù)列
是等比數(shù)列,并求出其通項公式;
(III) 對任意的,在數(shù)列
中是否存在連續(xù)的
項構(gòu)成等差數(shù)列?若存在,寫出這
項,并證明這
項構(gòu)成等差數(shù)列;若不存在,說明理由。
(Ⅰ)因為 ,所以
,
,
,
…………3分
(Ⅱ)由題意,對于任意的正整數(shù),
,
所以
…………4分
又
所以
…………6分
又
…………7分
所以是首項為2,公比為2的等比數(shù)列,所以
…………8分
(III)存在. 事實上,對任意的,在數(shù)列
中,
這連續(xù)的
項就構(gòu)成一個等差數(shù)列 ……10分
我們先來證明:
“對任意的,
,有
”
由(II)得,所以
.
當為奇數(shù)時,
當為偶數(shù)時,
記
因此要證,只需證明
,
其中
(這是因為若,則當
時,則
一定是奇數(shù),
有
=;
當時,則
一定是偶數(shù),有
= )
如此遞推,要證,
只要證明
,
其中,
如此遞推下去, 我們只需證明,
即,即
,由(I)可得,
所以對,
,有
,
對任意的 ,
,
,其中
,
所以
又,
,所以
所以這連續(xù)的
項,
是首項為,公差為
的等差數(shù)列 . …………13分
說明:當(其中
)時,
因為構(gòu)成一個項數(shù)為
的等差數(shù)列,所以從這個數(shù)列中任取連續(xù)的
項,也是一個項數(shù)為
,公差為
的等差數(shù)列.
【解析】略
科目:高中數(shù)學 來源:2015屆江西省高一第二次月考數(shù)學試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數(shù)在區(qū)間
上的圖象.
(3)設0<x<,且方程
有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題
(本小題滿分13分)已知定義域為的函數(shù)
是奇函數(shù).
(1)求的值;(2)判斷函數(shù)
的單調(diào)性;
(3)若對任意的,不等式恒成立
,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題
(本小題滿分13分)已知集合,
,
.
(1)求(∁
; (2)若
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:河南省09-10學年高二下學期期末數(shù)學試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,
為
的中點。
(Ⅰ)求證:∥平面
;
(Ⅱ)求異面直線與
所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省高三5月月考調(diào)理科數(shù)學 題型:解答題
(本小題滿分13分)
已知為銳角,且
,函數(shù)
,數(shù)列{
}的首項
.
(1) 求函數(shù)的表達式;
(2)在中,若
A=2
,
,BC=2,求
的面積
(3) 求數(shù)列的前
項和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com