日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE = x,G是BC的中點(diǎn)。沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖) .

           (1) 當(dāng)x=2時(shí),求證:BD⊥EG ;

          (2) 若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為f(x),求f(x)的最大值;

           (3) 當(dāng) f(x)取得最大值時(shí),求二面角D-BF-C的余弦值.

          (1)同解析

          (2) f(x)的最大值為

          (3) 二面角D-BF-C的余弦值為-


          解析:

          1) 作DH⊥EF于H,連BH,GH,

          由平面平面知:DH⊥平面EBCF,

          而EG平面EBCF,故EG⊥DH。

          又四邊形BGHE為正方形,∴EG⊥BH,

          BHDH=H,故EG⊥平面DBH

          而B(niǎo)D平面DBH,∴ EG⊥BD

          (2)∵AD∥面BFC,

          所以 VA-BFC4(4-x)x

          時(shí)有最大值為

          (3)作DH⊥EF于H,作HM⊥BF,連DM。

          由三垂線定理知 BF⊥DM,∴∠DMH是二面角D-BF-C的平面角的補(bǔ)角。             ………………………………………………………………9分

          由△HMF∽△EBF,知,而HF=1,BE=2,,∴HM=

          又DH=2,

          ∴在Rt△HMD中,tan∠DMH=-,

          因∠DMH為銳角,∴cos∠DMH=, 

          而∠DMH是二面角D-BF-C的平面角的補(bǔ)角,

          故二面角D-BF-C的余弦值為-。   

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知梯形ABCD中|AB|=2|CD|,點(diǎn)E分有向線段
          .
          AC
          所成的比為λ,雙曲線過(guò)C、D、E三點(diǎn),且以A、B為焦點(diǎn),當(dāng)
          2
          3
          ≤λ≤
          3
          4
          時(shí),求雙曲線離心率c的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)精英家教網(wǎng)已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
          π2
          ,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE=x,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).
          (1)當(dāng)x=2時(shí),求證:BD⊥EG;
          (2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為f(x),求f(x)的最大值;
          (3)當(dāng)f(x)取得最大值時(shí),求二面角D-BF-C的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)精英家教網(wǎng)已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
          π2
          ,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,沿EF將梯形ABCD翻折,使AE⊥平面EBCF(如圖).設(shè)AE=x,四面體DFBC的體積記為f(x).
          (1)寫出f(x)表達(dá)式,并求f(x)的最大值;
          (2)當(dāng)x=2時(shí),求異面直線AB與DF所成角θ的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
          π2
          ,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE=x.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF(如圖).G是BC的中點(diǎn),以F、B、C、D為頂點(diǎn)的三棱錐的體積記為f(x).
          (1)當(dāng)x=2時(shí),求證:BD⊥EG;
          (2)求f(x)的最大值;
          (3)當(dāng)f(x)取得最大值時(shí),求異面直線AE與BD所成的角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知梯形ABCD中,AD∥BC,∠ABC=90°,AD=a,BC=2a,∠DCB=60°,在平面ABCD內(nèi),過(guò)C作l⊥CB,以l為軸將梯形ABCD旋轉(zhuǎn)一周,求所得旋轉(zhuǎn)體的表面積及體積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案