日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,四棱錐P-ABCD的底面是邊長為1的正方形,側(cè)棱PA⊥底面ABCD,且PA=2,E是側(cè)棱PA上的動(dòng)點(diǎn).
          (I)求四棱錐P-ABCD的體積;
          (Ⅱ)如果E是PA的中點(diǎn),求證:PC平面BDE;
          (Ⅲ)探究:不論點(diǎn)E在側(cè)棱PA的任何位置,BD⊥CE是否都成立?若成立,證明你的結(jié)論;若不成立,請(qǐng)說明理由.
          (1)∵PA⊥平面ABCD,
          ∴VP-ABCD=
          1
          3
          SABCD•PA
          =
          1
          3
          ×12×2
          =
          2
          3
          …3分
          即四棱錐P-ABCD的體積為
          2
          3
          .…4分
          (2)證明:連接AC交BD于O,連接OE.
          ∵四邊形ABCD是正方形,∴O是AC的中點(diǎn).
          又∵E是PA的中點(diǎn),∴PCOE.…6分
          ∵PC?平面BDE,OE?平面BDE
          ∴PC平面BDE.…8分
          (3)不論點(diǎn)E在何位置,BD⊥CE成立.…9分
          證明如下:∵四邊形ABCD是正方形,∴BD⊥AC.
          ∵PA⊥平面ABCD,且BD?平面ABCD,∴BD⊥PA.
          又∵AC∩PA=A,∴BD⊥平面PAC.…10分
          ∵不論點(diǎn)E在何位置,都有CE?平面PAC.
          ∴不論點(diǎn)點(diǎn)E在何位置,BD⊥CE成立.…12分.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知四棱錐S-ABCD,底面為正方形,SA⊥底面ABCD,AB=AS=a,M、N分別為AB、SC中點(diǎn).
          (Ⅰ)求四棱錐S-ABCD的表面積;
          (Ⅱ)求證:MN平面SAD.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖為一組合體,其底面ABCD為正方形,PD⊥平面ABCD,ECPD,且PD=AD=2EC=2
          (Ⅰ)求證:BE平面PDA;
          (Ⅱ)求四棱錐B-CEPD的體積;
          (Ⅲ)求該組合體的表面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在四棱錐E-ABCD中,底面ABCD是矩形,AB=2BC,P、Q分別為線段AB、CD的中點(diǎn),EP⊥底面ABCD.
          (1)求證:AQ平面CEP;
          (2)求證:平面AEQ⊥平面DEP;
          (3)若EP=AP=1,求三棱錐E-AQC的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6.D、E分別是AC、AB上的點(diǎn),且DEBC,將△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如圖2.
          (1)求證:BC平面A1DE;
          (2)求證:BC⊥平面A1DC;
          (3)當(dāng)D點(diǎn)在何處時(shí),A1B的長度最小,并求出最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在直三棱柱ABC-A1B1C1中,AC=3,AB=5,cos∠BAC=
          3
          5

          (1)求證:BC⊥AC1
          (2)若D是AB的中點(diǎn),求證:AC1平面CDB1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,且AB=1,D1D=
          2
          ,E、F、G分別A1B1、B1C1、BB1的中點(diǎn).
          (1)求直線D1B與平面ABCD所成角的大。
          (2)求證:AC平面EGF.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          正三棱柱ABC-A1B1C1中,M、N分別為A1B1、AB的中點(diǎn).
          ①求證:平面A1NC平面BMC1
          ②若AB=AA1,求BM與AC所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,垂足為點(diǎn)A,PA=AB=2,點(diǎn)M,N分別是PD,PB的中點(diǎn).
          (I)求證:PB平面ACM;
          (II)求證:MN⊥平面PAC;
          (III)求四面體A-MBC的體積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案