日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】數(shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N* . (Ⅰ)證明:數(shù)列{ }是等差數(shù)列;
          (Ⅱ)設bn=3n ,求數(shù)列{bn}的前n項和Sn

          【答案】證明(Ⅰ)∵nan+1=(n+1)an+n(n+1), ∴ ,
          ,
          ∴數(shù)列{ }是以1為首項,以1為公差的等差數(shù)列;
          (Ⅱ)由(Ⅰ)知, ,
          ,
          bn=3n =n3n ,
          3n1+n3n
          3n+n3n+1
          ① ﹣②得 3n﹣n3n+1
          =
          =

          【解析】(Ⅰ)將nan+1=(n+1)an+n(n+1)的兩邊同除以n(n+1)得 ,由等差數(shù)列的定義得證.(Ⅱ)由(Ⅰ)求出bn=3n =n3n , 利用錯位相減求出數(shù)列{bn}的前n項和Sn
          【考點精析】本題主要考查了等比關系的確定和數(shù)列的前n項和的相關知識點,需要掌握等比數(shù)列可以通過定義法、中項法、通項公式法、前n項和法進行判斷;數(shù)列{an}的前n項和sn與通項an的關系才能正確解答此題.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖1,四邊形ABCD為直角梯形,AD∥BC,AD⊥AB,AD=1,BC=2,E為CD上一點,F(xiàn)為BE的中點,且DE=1,EC=2,現(xiàn)將梯形沿BE折疊(如圖2),使平面BCE⊥ABED.

          (1)求證:平面ACE⊥平面BCE;
          (2)能否在邊AB上找到一點P(端點除外)使平面ACE與平面PCF所成角的余弦值為 ?若存在,試確定點P的位置,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設橢圓C: =1(a>b>0),橢圓C短軸的一個端點與長軸的一個端點的連線與圓O:x2+y2= 相切,且拋物線y2=﹣4 x的準線恰好過橢圓C的一個焦點. (Ⅰ)求橢圓C的方程;
          (Ⅱ)過圓O上任意一點P作圓的切線l與橢圓C交于A,B兩點,連接PO并延長交圓O于點Q,求△ABQ面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在△ABC中,角A,B,C的對邊長是a,b,c公差為1的等差數(shù)列,且a+b=2ccosA. (Ⅰ)求證:C=2A;
          (Ⅱ)求a,b,c.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】函數(shù)y=f(x)在[0,2]上單調遞增,且函數(shù)f(x+2)是偶函數(shù),則下列結論成立的是(
          A.f(1)<f( )<f( )??
          B.f( )<f(1)<f( )??
          C.f( )<f( )<f(1)??
          D.f( )<f(1)<f(

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設函數(shù)f(x)=|x﹣a|+5x.
          (1)當a=﹣1時,求不等式f(x)≤5x+3的解集;
          (2)若x≥﹣1時有f(x)≥0,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在直角坐標系中 中,曲線 的參數(shù)方程為 為參數(shù)),以原點 為極點, 軸的正半軸為極軸建立極坐標系.
          (1)寫出曲線 的普通方程和極坐標方程;
          (2)若直線 與曲線 相交于點 兩點,且 ,求證: 為定值,并求出這個定值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在直角坐標系中,直線l的參數(shù)方程為 (t為參數(shù)),在極坐標系(與直角坐標系xoy取相同的單位長度,且以原點為極點,x軸的正半軸為極軸)中,圓C的極坐標方程為ρ=4cosθ.
          (1)若直l線與圓C相切,求實數(shù)a的值;
          (2)若點M的直角坐標為(1,1),求過點M且與直線l垂直的直線m的極坐標方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】微信是騰訊公司推出的一種手機通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內銷售商品的人(被稱為微商).為了調查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機采訪男性、女性用戶各50 名,其中每天玩微信超過6 小時的用戶列為“微信控”,否則稱其為“非微信控”,調查結果如下:

          微信控

          非微信控

          合計

          男性

          26

          24

          50

          女性

          30

          20

          50

          合計

          56

          44

          100


          (1)根據(jù)以上數(shù)據(jù),能否有60%的把握認為“微信控”與”性別“有關?
          (2)現(xiàn)從調查的女性用戶中按分層抽樣的方法選出5 人并從選出的5 人中再隨機抽取3 人贈送200 元的護膚品套裝,記這3 人中“微信控”的人數(shù)為X,試求X 的分布列與數(shù)學期望. 參考公式: ,其中n=a+b+c+d.

          P(K2≥k0

          0.50

          0.40

          0.25

          0.05

          0.025

          0.010

          k0

          0.455

          0.708

          1.323

          3.841

          5.024

          6.635

          查看答案和解析>>

          同步練習冊答案