日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. π
          2
          -
          π
          2
          (sinx+cosx)dx
          的值為( 。
          A、0
          B、
          π
          4
          C、2
          D、4
          分析:本題考查的知識點(diǎn)是簡單復(fù)合函數(shù)的定積分,要求
          π
          2
          -
          π
          2
          (sinx+cosx)dx
          ,關(guān)鍵是要確定滿足條件F′(x)=sinx+cosx的函數(shù)F(x),根據(jù)三角函數(shù)的導(dǎo)數(shù)的公式,我們易得F(x)=-cosx+sinx,代入即可求出
          π
          2
          -
          π
          2
          (sinx+cosx)dx
          的值.
          解答:解:令F(x)=-cosx+sinx,
          ∴F′(x)=sinx+cosx,
          所以
          π
          2
          -
          π
          2
          (sinx+cosx)dx=F(
          π
          2
          )-F(-
          π
          2
          )=1-(-1)=2

          故選C
          點(diǎn)評:解答定積分的計(jì)算題,關(guān)鍵是熟練掌握定積分的相關(guān)性質(zhì):①∫ab1dx=b-a②∫abkf(x)dx=k∫abf(x)dx③∫abf(x)±g(x)dx=∫abf(x)dx±∫abg(x)dx
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知向量
          a
          =(
          3
          ,1)
          ,向量
          b
          =(sinα-m,cosα)

          (Ⅰ)若
          a
          b
          ,且α∈[0,2π),將m表示為α的函數(shù),并求m最小值及相應(yīng)的α值;
          (Ⅱ)若
          a
          b
          ,且m=0,求
          cos(
          π
          2
          -α)•sin(π+2α)
          cos(π-α)
          的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<
          π
          2
          )的一部分圖象如圖所示,將函數(shù)f(x)圖象上每一點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長為原來的2倍得到圖象表示的函數(shù)可以為( 。
          A、y=sin(x+
          π
          6
          B、y=sin(4x+
          π
          6
          C、y=sin(x+
          π
          12
          D、y=sin(4x+
          π
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知向量
          a
          =(-2,sinθ)與
          b
          =(cosθ,1)互相垂直,其中θ∈(
          π
          2
          ,π).
          (1)求sinθ和cosθ的值;
          (2)若sin(θ-φ)=
          10
          10
          ,
          π
          2
          <φ<π,求cosφ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          將函數(shù)y=sin(2x+
          π
          4
          )
          的圖象向左平移
          π
          4
          個單位,再向上平移2個單位,則所得圖象的函數(shù)解析式是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•徐州模擬)[選修4-4:坐標(biāo)系與參數(shù)方程]
          在極坐標(biāo)系中,已知點(diǎn)P為圓ρ2+2ρsinθ-7=0上任一點(diǎn).求點(diǎn)P到直線ρcosθ+ρsinθ-7=0的距離的最小值與最大值.

          查看答案和解析>>

          同步練習(xí)冊答案