日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線C:y2=4x的焦點為F,過點K(-1,0)的直l與C相交于A、B兩點,點A關(guān)于x軸的對稱點為D。 (1)證明:點F在直線BD上;
          (2)設(shè)=,求△BDK的內(nèi)切圓M的方程。
          解:(1)設(shè)A(x1,y1),B(x2,y2),D(x1,-y1),l的方程為x=my-1(m≠0)
          將x=my-1代入y2=4x并整理得y2-4my+4=0
          從而y1+y2=4m,y1y2=4   ①
          直線BD的方程為

          令y=0,得
          所以點F(1,0)在直線BD上;
          (2)由①知,x1+x2=(my1-1)+(my2-1)=4m2-2,x1x2=(my1-1)(my2-1)=1
          因為
          (x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+4=8-4m2
          故8-4m2=,解得m=
          所以l的方程為3x+4y+3=0,3x-4y+3=0
          又由①知
          故直線BD的斜率
          因而直線BD的方程為
          因為KF為∠BKD的平分線,故可設(shè)圓心M(t,0)(-1<t<1),M(t,0)到l及BD的距離分別為
          ,由或t=9(舍去)
          故圓M的半徑
          所以圓M的方程為。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知拋物線C:y2=2px(p>0)的焦點為F,A是拋物線上橫坐標為4且位于x軸上方的點. A到拋物線準線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點為M(O為坐標原點).
          (Ⅰ)求拋物線C的方程;
          (Ⅱ)過M作MN⊥FA,垂足為N,求點N的坐標;
          (Ⅲ)以M為圓心,4為半徑作圓M,點P(m,0)是x軸上的一個動點,試討論直線AP與圓M的位置關(guān)系.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線C:y2=2px(p>0),F(xiàn)為拋物線C的焦點,A為拋物線C上的動點,過A作拋物線準線l的垂線,垂足為Q.
          (1)若點P(0,4)與點F的連線恰好過點A,且∠PQF=90°,求拋物線方程;
          (2)設(shè)點M(m,0)在x軸上,若要使∠MAF總為銳角,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線C:y2=2Px(p>0)上橫坐標為4的點到焦點的距離為5.
          (Ⅰ)求拋物線C的方程;
          (Ⅱ)設(shè)直線y=kx+b(k≠0)與拋物線C交于兩點A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求證:a2=
          16(1-kb)k2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線C:y2=4x,點M(m,0)在x軸的正半軸上,過M的直線l與C相交于A、B兩點,O為坐標原點.
          (I)若m=1,且直線l的斜率為1,求以AB為直徑的圓的方程;
          (II)問是否存在定點M,不論直線l繞點M如何轉(zhuǎn)動,使得
          1
          |AM|2
          +
          1
          |BM|2
          恒為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線C:y2=8x與點M(-2,2),過C的焦點,且斜率為k的直線與C交于A,B兩點,若
          MA
          MB
          =0,則k=( 。

          查看答案和解析>>

          同步練習(xí)冊答案