日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•蕪湖三模)若存在區(qū)間M=[a,b](a<b)使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的一個“穩(wěn)定區(qū)間”.給出下列4個函數(shù):
          ①f(x)=ex     ②f(x)=x3 ③f(x)=cos
          πx2
               ④f(x)=lnx+1
          其中存在穩(wěn)定區(qū)間的函數(shù)有
          ②③
          ②③
          (寫出所有正確命題的序號).
          分析:根據(jù)“穩(wěn)定區(qū)間”的定義,我們要想說明函數(shù)存在“穩(wěn)定區(qū)間”,我們只要舉出一個符合定義的區(qū)間M即可,但要說明函數(shù)沒有“穩(wěn)定區(qū)間”,我們可以用反證明法來說明.由此對四個函數(shù)逐一進行判斷,即可得到答案.
          解答:解::①對于函數(shù)f(x)=ex 若存在“穩(wěn)定區(qū)間”[a,b],由于函數(shù)是定義域內的增函數(shù),故有ea=a,eb=b,
          即方程ex=x有兩個解,即y=ex和y=x的圖象有兩個交點,這與即y=ex和y=x的圖象沒有公共點相矛盾,故①不存在“穩(wěn)定區(qū)間”.
          ②對于f(x)=x3 存在“穩(wěn)定區(qū)間”,如 x∈[0,1]時,f(x)=x3 ∈[0,1].
          ③對于f(x)=sin
          π
          2
          x,存在“穩(wěn)定區(qū)間”,如 x∈[0,1]時,f(x)=sin
          π
          2
          x∈[0,1].
          ④對于 f(x)=lnx,若存在“穩(wěn)定區(qū)間”[a,b],由于函數(shù)是定義域內的增函數(shù),故有l(wèi)na=a,且lnb=b,即方程lnx=x 有兩個解,
          即y=lnx 和 y=x的圖象有兩個交點,這與y=lnx 和 y=x的圖象沒有公共點相矛盾,故④不存在“穩(wěn)定區(qū)間”.
          故答案為 ②③.
          點評:本題考查的知識點是函數(shù)的概念及其構造要求,在說明一個函數(shù)沒有“穩(wěn)定區(qū)間”時,利用函數(shù)的性質、圖象結合反證法證明是解答本題的關鍵,屬于中檔題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          (2012•蕪湖三模)若方程e2x+ex-a=0有實數(shù)解,則實數(shù)a的取值范圍是
          (0,+∞)
          (0,+∞)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•蕪湖三模)如圖,將邊長為1,2,3的正八邊形疊放在一起,同一邊上相鄰珠子的距離為1,若以此方式再放置邊長為4,5,6,…,10的正八邊形,則這10個正八邊形鑲嵌的珠子總數(shù)是
          341
          341

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•蕪湖三模)在等比數(shù)列{an}中,已知a6-a4=24,a3a5=64,則{an}前8項的和為( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•蕪湖三模)設實數(shù)x,y滿足
          x-y-2≤0
          x+2y-5≥0
          y-2≤0
          u=
          x+y
          x
          的取值范圍是(  )

          查看答案和解析>>

          同步練習冊答案