日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f0(x)=x2ex,f1(x)=f0(x),f2(x)=f1(x),…,fn+1(x)=fn(x),n∈N+
          (I)求f1(x),f2(x),f3(x),f4(x)的表達(dá)式;
          (II)猜想fn(x)的表達(dá)式,并用數(shù)學(xué)歸納法證明.
          分析:(I)由函數(shù)f0(x)=x2ex,利用導(dǎo)數(shù)的性質(zhì),能夠依次求出f1(x),f2(x),f3(x),f4(x)的表達(dá)式.
          (II)由f0(x)=x2ex,f1(x)=(x2+2x)ex,f2(x)=(x2+4x+2)ex,f3(x)=(x2+6x+6)ex,f4(x)=(x2+8x+12)ex,猜想fn(x)=[x2+2nx+n(n-1)]ex.再用數(shù)學(xué)歸納法證明.
          解答:解:(I)∵函數(shù)f0(x)=x2ex,
          f1(x)=f0(x)=2xex+x2ex=(x2+2x)ex
          f2(x)=f1(x)=(2+2x)ex+(2x+x2)ex=(x2+4x+2)ex,
          f3(x)=f2(x)=(2x+4)ex+(x2+4x+2)ex=(x2+6x+6)ex,
          f4(x)=f3(x)=(2x+6)ex+(x2+6x+6)ex=(x2+8x+12)ex
          (II)∵f0(x)=x2ex,
          f1(x)=(x2+2x)ex,
          f2(x)=(x2+4x+2)ex
          f3(x)=(x2+6x+6)ex,
          f4(x)=(x2+8x+12)ex
          ∴猜想fn(x)=[x2+2nx+n(n-1)]ex
          下面用數(shù)學(xué)歸納法證明:
          ①n=1時(shí),f1(x)=[x2+(2×1)x+1×(1-1)]ex=(x2+2x)ex,成立;
          ②假設(shè)n=k時(shí),成立,
          fk(x)=[x2+2kx+k(k-1)]ex,
          則當(dāng)n=k+1時(shí),
          fk+1(x)=fk(x)=(2x+2k)ex+[x2+2kx+k(k-1)]ex
          =[x2+2(k+1)x+k(k+1)]ex,也成立,
          由①②,得fn(x)=[x2+2nx+n(n-1)]ex
          點(diǎn)評(píng):本題考查導(dǎo)數(shù)的應(yīng)用和數(shù)學(xué)歸納法的證明,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,認(rèn)真分析,注意總結(jié),合理地進(jìn)行猜想.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f0(x)=|x|,f1(x)=|f0(x)-1|,f2(x)=|f1(x)-2|,則函數(shù)f2(x)的圖象與x軸所圍成圖形中的封閉部分的面積是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•房山區(qū)一模)設(shè)函數(shù)f0(x)=1-x2,f1(x)=|f0(x)-
          1
          2
          |
          fn(x)=|fn-1(x)-
          1
          2n
          |
          ,(n≥1,n∈N),則方程f1(x)=
          1
          3
          4
          4
          個(gè)實(shí)數(shù)根,方程fn(x)=(
          1
          3
          )n
          2n+1
          2n+1
          個(gè)實(shí)數(shù)根.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•江門(mén)二模)設(shè)函數(shù)f0(x)=x2e-
          12
          x
          ,記f0(x)的導(dǎo)函數(shù)f'0(x)=f1(x),f1(x)的導(dǎo)函數(shù)f'1(x)=f2(x),f2(x)的導(dǎo)函數(shù)f'2(x)=f3(x),…,fn-1(x)的導(dǎo)函數(shù)f'n-1(x)=fn(x),n=1,2,….
          (1)求f3(0);
          (2)用n表示fn(0);
          (3)設(shè)Sn=f2(0)+f3(0)+…+fn+1(0),是否存在n∈N*使Sn最大?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:江門(mén)二模 題型:解答題

          設(shè)函數(shù)f0(x)=x2e-
          1
          2
          x
          ,記f0(x)的導(dǎo)函數(shù)f'0(x)=f1(x),f1(x)的導(dǎo)函數(shù)f'1(x)=f2(x),f2(x)的導(dǎo)函數(shù)f'2(x)=f3(x),…,fn-1(x)的導(dǎo)函數(shù)f'n-1(x)=fn(x),n=1,2,….
          (1)求f3(0);
          (2)用n表示fn(0);
          (3)設(shè)Sn=f2(0)+f3(0)+…+fn+1(0),是否存在n∈N*使Sn最大?證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案