【題目】如圖,在矩形中,
,
,
是
的中點(diǎn),以
為折痕將
向上折起,
變?yōu)?/span>
,且平面
平面
.
(Ⅰ)求證: ;
(Ⅱ)求二面角的大小.
【答案】(Ⅰ)證明見解析;(Ⅱ) .
【解析】試題分析:(Ⅰ)根據(jù)勾股定理推導(dǎo)出,取
的中點(diǎn)
,連結(jié)
,則
,從而
平面
,由此證得結(jié)論成立;(Ⅱ)以
為原點(diǎn),
為
軸,
為
軸,過
作平面
的垂線為
軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角
的大小.
試題解析:(Ⅰ)證明:∵,
,
∴,∴
,
取的中點(diǎn)
,連結(jié)
,則
,
∵ 平面平面
,/span>
∴平面
,∴
,
從而平面
,∴
(Ⅱ)如圖建立空間直角坐標(biāo)系,
則、
、
、
,
,從而
=(4,0,0),
,
.
設(shè)為平面
的法向量,
則可以取
設(shè)為平面
的法向量,
則可以取
因此, ,有
,即平面
平面
,
故二面角的大小為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象在點(diǎn)
處的切線為
,若
也為函數(shù)
的圖象的切線,則
必須滿足( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)(題文)已知橢圓的離心率為
,過右焦點(diǎn)
且斜率為1的直線交橢圓
于A,B兩點(diǎn), N為弦AB的中點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求直線ON的斜率;
(2)求證:對(duì)于橢圓上的任意一點(diǎn)M,都存在
,使得
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商品近一個(gè)月內(nèi)(30天)預(yù)計(jì)日銷量(件)與時(shí)間t(天)的關(guān)系如圖1所示,單價(jià)
(萬(wàn)元/件)與時(shí)間t(天)的函數(shù)關(guān)系如圖2所示,(t為整數(shù))
(1)試寫出與
的解析式;
(2)求此商品日銷售額的最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別過橢圓左、右焦點(diǎn)
的動(dòng)直線
相交于
點(diǎn),與橢圓
分別交于
與
不同四點(diǎn),直線
的斜率
滿足
.已知當(dāng)
與
軸重合時(shí),
,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在定點(diǎn),使得
為定值?若存在,求出
點(diǎn)坐標(biāo)并求出此定值;若不存在,說明理由.
【答案】(Ⅰ);(Ⅱ)
,
和
.
【解析】試題分析:(1)當(dāng)與
軸重合時(shí),
垂直于
軸,得
,得
,
從而得橢圓的方程;(2)由題目分析如果存兩定點(diǎn),則
點(diǎn)的軌跡是橢圓或者雙曲線 ,所以把
坐標(biāo)化,可得
點(diǎn)的軌跡是橢圓,從而求得定點(diǎn)
和點(diǎn)
.
試題解析:當(dāng)
與
軸重合時(shí),
, 即
,所以
垂直于
軸,得
,
,, 得
,
橢圓
的方程為
.
焦點(diǎn)
坐標(biāo)分別為
, 當(dāng)直線
或
斜率不存在時(shí),
點(diǎn)坐標(biāo)為
或
;
當(dāng)直線斜率存在時(shí),設(shè)斜率分別為
, 設(shè)
由
, 得:
, 所以:
,
, 則:
. 同理:
, 因?yàn)?/span>
, 所以
, 即
, 由題意知
, 所以
, 設(shè)
,則
,即
,由當(dāng)直線
或
斜率不存在時(shí),
點(diǎn)坐標(biāo)為
或
也滿足此方程,所以點(diǎn)
在橢圓
上.存在點(diǎn)
和點(diǎn)
,使得
為定值,定值為
.
考點(diǎn):圓錐曲線的定義,性質(zhì),方程.
【方法點(diǎn)晴】本題是對(duì)圓錐曲線的綜合應(yīng)用進(jìn)行考查,第一問通過兩個(gè)特殊位置,得到基本量,
,得
,
,從而得橢圓的方程,第二問由題目分析如果存兩定點(diǎn),則
點(diǎn)的軌跡是橢圓或者雙曲線 ,本題的關(guān)鍵是從這個(gè)角度出發(fā),把
坐標(biāo)化,求得
點(diǎn)的軌跡方程是橢圓
,從而求得存在兩定點(diǎn)
和點(diǎn)
.
【題型】解答題
【結(jié)束】
21
【題目】已知,
,
.
(Ⅰ)若,求
的極值;
(Ⅱ)若函數(shù)的兩個(gè)零點(diǎn)為
,記
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)設(shè)g(x)=log4,若函數(shù)f(x)與g(x)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】容器中有種粒子,若相同種類的兩顆粒子發(fā)生碰撞,則變成一顆
粒子;不同種類的兩顆粒子發(fā)生碰撞,會(huì)變成另外一種粒子. 例如,一顆
粒子和一顆
粒子發(fā)生碰撞則變成一顆
粒子.現(xiàn)有
粒子
顆,
粒子
顆,
粒子
顆,如果經(jīng)過各種兩兩碰撞后,只剩
顆粒子. 給出下列結(jié)論:
① 最后一顆粒子可能是粒子
② 最后一顆粒子一定是粒子
③ 最后一顆粒子一定不是粒子
④ 以上都不正確
其中正確結(jié)論的序號(hào)是________.(寫出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線C的極坐標(biāo)方程為ρ﹣4cosθ+3ρsin2θ=0,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l過點(diǎn)M(1,0),傾斜角為.
(Ⅰ)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;
(Ⅱ)若曲線C經(jīng)過伸縮變換后得到曲線C′,且直線l與曲線C′交于A,B兩點(diǎn),求|MA|+|MB|.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com