日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知偶函數(shù)f(x)的圖象關(guān)于直線x=1對稱,且x∈[3,4]時,f(x)=2x-1,則:x∈[14,15]時,函數(shù)f(x)的解析式為
          f(x)=35-2x
          f(x)=35-2x
          分析:由已知可得,f(x)=f(-x),f(2+x)=f(-x),聯(lián)立可得f(x)是以2為周期的周期函數(shù),,而當x∈[14,15],18-x∈[3,4],代入可求
          解答:解:∵函數(shù)f(x)是偶函數(shù)
          ∴f(x)=f(-x) ①
          ∵函數(shù)的圖象關(guān)于x=1對稱,
          ∴f(1-x)=f(1+x)即f(2+x)=f(-x)②
          ①②聯(lián)立可得f(x+2)=f(x)
          所以f(x)是周期函數(shù),周期為2
          x∈[14,15],x-18∈[-4,-3],18-x∈[3,4]
          ∵x∈[3,4]時,f(x)=2x-1,
          ∴f(18-x)=2(18-x)-1=35-2x
          ∴f(x)=35-2x
          故答案為:f(x)=35-2x
          點評:本題主要考 查了利用函數(shù)的對稱性及偶函數(shù)的性質(zhì)求解函數(shù)的周期,及利用周期求解函數(shù)在某一區(qū)間上的函數(shù)解析式,解題的關(guān)鍵是把所求的函數(shù)的x轉(zhuǎn)化到區(qū)間上去
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知偶函數(shù)f(x)的定義域為(-∞,0)∪(0,+∞),當x<0時,f(x)=x3+1,求當x>0時f(x)表達式;并寫出f(x)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知偶函數(shù)f(x)的定義域為R,且在(-∞,0)上是增函數(shù),則f(-
          3
          4
          )與f(a2-a+1)(a∈R)的大小關(guān)系是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知偶函數(shù)f(x)的圖象與x軸有五個公共點,那么方程f(x)=0的所有實根之和為
          0
          0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知偶函數(shù)f(x)的定義域為R,且在(-∞,0)上是增函數(shù),M=f(
          3
          4
          )
          ,N=f(a2-a+1)(a∈R),則M與N的大小關(guān)系( 。
          A、M≥NB、M≤N
          C、M<ND、M>N

          查看答案和解析>>

          同步練習冊答案