日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如右圖,△ABC中,||=3,||=1,  D是BC邊中垂線上任意一點(diǎn),則·()的值是(    )

             A.1      B.   C.2      D.4

           

           

           

          【答案】

          D

          【解析】略

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,△ABC中,BC=2
          3
          AB
          AC
          =4,
          AC
          CB
          =2
          ,雙曲線M是以B、C為焦點(diǎn)且過(guò)A點(diǎn).
          (Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求雙曲線M的方程;
          (Ⅱ)設(shè)過(guò)點(diǎn)E(1,0)的直線l分別與雙曲線M的左、右支交于
          F、G兩點(diǎn),直線l的斜率為k,求k的取值范圍.;
          (Ⅲ)對(duì)于(Ⅱ)中的直線l,是否存在k≠0使|OF|=|OG|若有求出k的值,若沒(méi)有說(shuō)明理由.(O為原點(diǎn))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB⊥底面ABC,且∠ASB=∠ABC=90°,AS=SB=2,AC=2
          3


          (Ⅰ)求證SA⊥SC;
          (Ⅱ)在平面幾何中,推導(dǎo)三角形內(nèi)切圓的半徑公式r=
          2S
          l
          (其中l(wèi)是三角形的周長(zhǎng),S是三角形的面積),常用如下方法(如右圖):
          ①以內(nèi)切圓的圓心O為頂點(diǎn),將三角形ABC分割成三個(gè)小三角形:△OAB,△OAC,△OB精英家教網(wǎng)C.
          ②設(shè)△ABC三邊長(zhǎng)分別為a,b,c.由S△ABC=S△OBC+S△OAC+S△OAB,
          S=
          1
          2
          ar+
          1
          2
          br+
          1
          2
          cr
          =
          1
          2
          lr
          ,則r=
          2S
          l

          類比上述方法,請(qǐng)給出四面體內(nèi)切球半徑的計(jì)算公式(不要求說(shuō)明類比過(guò)程),并利用該公式求出三棱錐S-ABC內(nèi)切球的半徑.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如右圖,在正三棱錐S-ABC中,M,N分別為棱SC,BC的中點(diǎn),AM⊥MN,若SA=
          3
          ,則正三棱錐S-ABC的外接球的體積為
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如左圖所示,直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分別是邊AD和BC上的點(diǎn),且EF∥AB,AD=2AE=2AB=4FC=4,將四邊形EFCD沿EF折起使AE=AD,如右圖所示.
          (1)求證:AF∥平面CBD;
          (2)求三棱錐C-ABF的體積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案