日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示,射線OA、OB分別與x軸正半軸成45°30°角,過(guò)點(diǎn)P(1,0)作直線AB分別交OAOBA、B兩點(diǎn),當(dāng)AB的中點(diǎn)C恰好落在直線yx上時(shí),求直線AB的方程.

          【答案】(3)x2y30.

          【解析】解:由題意可得kOAtan45°1

          kOBtan(180°30°)=-,

          所以射線OA的方程為yx(x≥0),

          射線OB的方程為y=-x(x≥0)

          設(shè)A(m,m)B(n,n),

          所以AB的中點(diǎn)C(),

          由點(diǎn)Cyx上,且APB三點(diǎn)共線得

          解得m,

          所以A(, )

          P(1,0),

          所以kABkAP

          所以直線AB的方程為y (x1),

          即直線AB的方程為(3)x2y30.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】數(shù)列 滿(mǎn)足: , 或1().對(duì)任意,都存在,使得.,其中 且兩兩不相等.

          (I)若.寫(xiě)出下列三個(gè)數(shù)列中所有符合題目條件的數(shù)列的序號(hào);

          ①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2

          (Ⅱ)記.若,證明:

          (Ⅲ)若,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓 的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切. 、是橢圓的右頂點(diǎn)與上頂點(diǎn),直線與橢圓相交于兩點(diǎn).

          (Ⅰ)求橢圓的方程;

          (Ⅱ)當(dāng)四邊形面積取最大值時(shí),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知不等式|y4||y|2x對(duì)任意實(shí)數(shù)x,y都成立則常數(shù)a的最小值為(  )

          A. 1 B. 2 C. 3 D. 4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知m,n∈Rf(x)=|xm|+|2xn|.

          (1)當(dāng)mn=1時(shí),求f(x)的最小值;

          (2)若f(x)的最小值為2,求證.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓Ea﹥b﹥0)的一個(gè)焦點(diǎn)與短軸的兩個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)在橢圓E.

          )求橢圓E的方程;

          )設(shè)不過(guò)原點(diǎn)O且斜率為的直線l與橢圓E交于不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為M,直線OM與橢圓E交于CD,證明:|MA|·|MB|=|MC|·|MD|.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類(lèi)的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

          甲說(shuō):“是作品獲得一等獎(jiǎng)”;

          乙說(shuō):“作品獲得一等獎(jiǎng)”;

          丙說(shuō):“兩項(xiàng)作品未獲得一等獎(jiǎng)”;

          丁說(shuō):“是作品獲得一等獎(jiǎng)”.

          若這四位同學(xué)中只有兩位說(shuō)的話(huà)是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在直角梯形ABCD中,∠ADC=90°,CDABADCDAB=2,將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體DABC.

          (1)求證:AD⊥平面BCD;

          (2)求三棱錐CABD的高.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知等比數(shù)列中, , 成等差數(shù)列;數(shù)列中的前項(xiàng)和為 .

          (1)求數(shù)列的通項(xiàng)公式;

          (2)求數(shù)列的前項(xiàng)和.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案