日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 不論m為何值,直線(m-2)x-y+3m+2=0恒過(guò)定點(diǎn)( 。
          分析:將直線的方程(m-2)x-y+3m+2=0是過(guò)某兩直線交點(diǎn)的直線系,故其一定通過(guò)某個(gè)定點(diǎn),將其整理成直線系的標(biāo)準(zhǔn)形式,求兩定直線的交點(diǎn)此點(diǎn)即為直線恒過(guò)的定點(diǎn).
          解答:解:直線(m-2)x-y+3m+2=0可為變?yōu)閙(x+3)+(-2x-y+2)=0
          x+3=0
          -2x-y+2=0
           解得:
          x=-3
          y=8

          故不論m為何值,直線(m-2)x-y+3m+2=0恒過(guò)定點(diǎn)(-3,8)
          故選;C.
          點(diǎn)評(píng):正確理解直線系的性質(zhì)是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知下列四個(gè)命題:
          ①若函數(shù)y=f(x)在x°處的導(dǎo)數(shù)f'(x°)=0,則它在x=x°處有極值;
          ②不論m為何值,直線y=mx+1均與曲線
          x2
          4
          +
          y2
          b2
          =1
          有公共點(diǎn),則b≥1;
          ③設(shè)直線l1、l2的傾斜角分別為α、β,且1+tanβ-tanα+tanαtanβ=0,則l1和l2的夾角為45°;
          ④若命題“存在x∈R,使得|x-a|+|x+1|≤2”是假命題,則|a+1|>2;
          以上四個(gè)命題正確的是
           
          (填入相應(yīng)序號(hào)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知直線l1:(2m+1)x+(m+1)y-7m-5=0(m∈R)和直線l1:x+3y-5=0,圓C:x2+y2-2x-4y=0.
          (1)當(dāng)m為何值時(shí),l1∥l2?
          (2)是否存在點(diǎn)P,使得不論m為何值,直線l1都經(jīng)過(guò)點(diǎn)P?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
          (3)試判斷直線l1與圓C的位置關(guān)系.若相交,求截得的弦長(zhǎng)最短時(shí)m的值以及最短長(zhǎng)度;若相切,求切點(diǎn)的坐標(biāo);若相離,求圓心到直線l1的距離的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知下列四個(gè)命題:
          ①若函數(shù)y=f(x)在x°處的導(dǎo)數(shù)f′(x0)=0,則它在x=x0處有極值;
          ②若不論m為何值,直線y=mx+1均與曲線
          x2
          4
          +
          y2
          b2
          =1
          有公共點(diǎn),則b≥1;
          ③若x、y、z∈R+,a=x+
          1
          y
          ,b=y+
          1
          z
          ,c=z+
          1
          x
          ,則a、b、c中至少有一個(gè)不小于2;
          ④若命題“存在x∈R,使得|x-a|+|x+1|≤2”是假命題,則|a+1|>2;
          以上四個(gè)命題正確的是
          ③④
          ③④
          (填入相應(yīng)序號(hào))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          不論m為何值,直線(m-1)x-y+(2m-1)=0恒過(guò)定點(diǎn)為
          (-2,1)
          (-2,1)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案