日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知f(x)=lnx+cosx,則f′(
          π
          2
          )
          =
          2
          π
          -1
          2
          π
          -1
          分析:本題先對已知函數(shù)f(x)進(jìn)行求導(dǎo),再將
          π
          2
          代入導(dǎo)函數(shù)解之即可.
          解答:解:f′(x)=-sinx+
          1
          x
          ,∴f′(
          π
          2
          )=-1+
          2
          π
          ,
          故答案為:
          2
          π
          -1
          點評:本題主要考查了導(dǎo)數(shù)的運算,以及求函數(shù)值,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          定義在(0,+∞)上的三個函數(shù)f(x)、g(x)、h(x),已知f(x)=lnx,g(x)=x2-af(x),h(x)=x-a
          x
          ,且g(x)在x=1處取得極值.
          (1)求a的值及h(x)的單調(diào)區(qū)間;
          (2)求證:當(dāng)1<x<e2時,恒有x<
          2+f(x)
          2-f(x)
          ;
          (3)把h(x)對應(yīng)的曲線C1向上平移6個單位后得到曲線C2,求C2與g(x)對應(yīng)曲線C3的交點的個數(shù),并說明道理.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=lnx,g(x)=x+
          a
          x
          (a∈R).
          (1)求f(x)-g(x)的單調(diào)區(qū)間;
          (2)若x≥1時,f(x)≤g(x)恒成立,求實數(shù)a的取值范圍;
          (3)當(dāng)n∈N*,n≥2時,證明:
          ln2
          3
          ln3
          4
          •…•
          lnn
          n+1
          1
          n

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=lnx-
          a
          x

          (Ⅰ)當(dāng)a>0時,判斷f(x)在定義域上的單調(diào)性;
          (Ⅱ)若f(x)<x2在(1,+∞)上恒成立,試求a的取值范圍;
          (Ⅲ)若f(x)在[1,e]上的最小值為
          3
          2
          ,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=lnx,g(x)=x2-x,
          (1)求函數(shù)h(x)=f(x)-g(x)的單調(diào)增區(qū)間;
          (2)當(dāng)x∈[-2,0]時,g(x)≤2c2-c-x3恒成立,求c的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=lnx+cosx,則f(x)在x=
          π2
          處的導(dǎo)數(shù)值為
           

          查看答案和解析>>

          同步練習(xí)冊答案