日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù),。
          (Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
          (Ⅱ)求函數(shù)在區(qū)間上的最小值;
          (Ⅲ)試判斷方程(其中)是否有實(shí)數(shù)解?并說明理由。
          (Ⅰ)(Ⅱ)(Ⅲ)沒有。理由見解析。
          本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
          (1)利用函數(shù)的定義域和導(dǎo)函數(shù),結(jié)合導(dǎo)數(shù)的正負(fù)號與函數(shù)單調(diào)性的關(guān)系得到結(jié)論。
          (2)在第一問的基礎(chǔ)上判定極值和端點(diǎn)值,進(jìn)而得到最值。
          (3)要方程無實(shí)數(shù)解則可以利用函數(shù)沒有零點(diǎn),結(jié)合導(dǎo)數(shù)的思想來判定解得。
          解:(Ⅰ)因?yàn)?br />          1分
          則有        2分
          當(dāng),或時(shí),
          ,此時(shí)單調(diào)遞增
          所以,函數(shù)的單調(diào)遞增區(qū)間是          3分
          (Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231158233779.png" style="vertical-align:middle;" />,
          所以
          當(dāng),即時(shí),函數(shù)單調(diào)遞增;
          當(dāng),即時(shí),函數(shù)單調(diào)遞減            4分
          于是,當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)遞增
          此時(shí),            5分
          當(dāng)時(shí),函數(shù)上單調(diào)遞減,在上單調(diào)遞增
          此時(shí),。
          綜上所述,            6分
          (Ⅲ)方程沒有實(shí)數(shù)解
          ,
          得:            7分
          設(shè)

          當(dāng)時(shí),;
          當(dāng)時(shí),
          故函數(shù)上單調(diào)遞增,
          上單調(diào)遞減             8分
          所以,函數(shù)上的最大值為
          由(Ⅱ)可知,
          上的最小值為          9分
          ,所以方程沒有實(shí)數(shù)解              10分
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)(x∈R).
          (1)求函數(shù)的單調(diào)區(qū)間和極值;
          (2)已知函數(shù)的圖象與函數(shù)的圖象關(guān)于直線x=1對稱,證明當(dāng)x>1時(shí),

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)函數(shù)f(x)=4x3+ax2+bx+5在x=與x=-1時(shí)有極值.
          (1)寫出函數(shù)的解析式;
          (2)指出函數(shù)的單調(diào)區(qū)間;
          (3)求f(x)在[-1,2]上的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分14分)
          已知函數(shù),其中.
          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;
          (Ⅱ)若直線是曲線的切線,求實(shí)數(shù)的值;
          (Ⅲ)設(shè),求在區(qū)間上的最大值.(其中為自然對數(shù)的底數(shù))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          設(shè)是定義在R上的奇函數(shù),且f(2)=0,當(dāng)x>0時(shí),有的導(dǎo)數(shù)<0恒成立,則不等式的解集是:
          A.(一2,0)(2,+ B.(一2,0)(0,2)
          C.(-,-2)(2,+ D.(-,-2)(0,2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù).
          (1)求的單調(diào)區(qū)間;
          (2)設(shè),若對任意,均存在,使得,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (12分)
          已知函數(shù)(其中是自然對數(shù)的底數(shù),為正數(shù))
          (I)若處取得極值,且的一個(gè)零點(diǎn),求的值;
          (II)若,求在區(qū)間上的最大值;
          (III)設(shè)函數(shù)在區(qū)間上是減函數(shù),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          .如圖為函數(shù)的圖象,為函數(shù)的導(dǎo)函數(shù),則不等式的解集為(         ).
          A.B.
          C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)
          (1)求函數(shù)的單調(diào)區(qū)間;
          (2)若直線與函數(shù)的圖像有個(gè)交點(diǎn),求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案